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Abstract. The article examines methods for
calculating protective structures under the action of
a blast wave, the pressure of which reaches different
points at different times. A phase-by-phase
calculation approach is considered, in which the
action of a series of forces with different arrival
times is treated as separate phases of vibration. The
initial conditions of the current phase are taken as
the final conditions (displacements and velocities)
of the previous phase.

The study focuses in detail on a single-degree-
of-freedom (SDOF) system subjected to forces with
varying arrival times. At each phase, the constants
of the particular and general solutions of the SDOF
differential equation are determined based on the
known right-hand side of the differential equation.
Once all constants are obtained, the displacements
at each phase are calculated.

It is shown that the advantage of this approach
lies in the fact that, regardless of the number of
intervals during which forces act at different times,
only one differential equation with its own initial
conditions and force set is solved at each phase.
Consequently, the constants for the particular and
general solutions are determined for each phase in

dependently. Therefore, the number of intervals
can be arbitrarily chosen by the engineer, and there
is no added complexity in the numerical
implementation even for systems with multiple
forces.

It is demonstrated that for a single-mass system,
different arrival times of the dynamic force do not
increase the system response. However, this scheme
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is used when a multi-degree-of-freedom (MDOF)
system is analyzed via modal decomposition,
treating each mode as an SDOF system with
consideration of the different force arrival times,
and then summing the responses.
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It is shown why, in linear systems, summing the
modal responses at specific times is correct,
whereas simply summing the maximum responses
iS not.

The study confirms that the phase-by-phase
consideration of system vibrations is correct, though
more cumbersome. For multi-mass systems under
impulsive loading, an analytical formula for the
total response to impulses reaching different points
at different times is provided. Both a triangular
impulse with finite duration and an instantaneous
impulse are considered.

Keywords: blast wave; vibration phase; single-
degree-of-freedom (SDOF) system; equation of
motion; impulse.

INTRODUCTION

Protective structures play an important role
in safeguarding the population during air
attacks. When conventional munitions are
employed, protective structures must shield
occupants from the blast wave and from
fragmentation. This necessitates performing
specific calculations, namely:

» the analysis of the load-bearing and
enclosing elements of protective structures
under the action of a blast shock wave;

« the analysis of the enclosing elements of
protective structures under the action of
fragments.

It should be noted that there are also certain
types of structures that are designed to
withstand the direct impact of individual
munitions. As a rule, these are specialized
facilities of critical importance. Additional,
specialized calculations are performed for such
structures, which are not considered in this
article.

The structural analysis of the enclosing
elements of protective buildings and facilities
under blast-wave loading may be performed
using one of three methods:

+ the direct integration method of the
equations of motion;

* the impulse (shock-impulse) method,;

* the quasi-static method.

Each of these methods is characterized by its
own type of loading. Recently, attention has
also been drawn to the question of whether the
non-uniform (non-simultaneous) arrival of
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blast-wave pressure affects the dynamic
displacements and internal forces in protective-
structure components.

ANALYSIS OF PREVIOUS RESEARCH

A considerable number of studies have been
devoted to the investigation of blast wave
effects. One of the key issues is the analysis of
the shape and function of blast wave pressure
[2, 12, 25]. In calculations, including those
specified in regulatory documents, both
curvilinear and simplified linear functions are
used [5, 23, 24]. Additionally, computational
tools for determining blast wave parameters are
also available [13].

Research has shown that accounting for the
negative phase of pressure leads to changes in
dynamic forces in elements of protective
structures [1, 14]. However, in many regulatory
documents, calculations are performed
considering only the positive phase of blast
wave pressure.

There is extensive discussion and debate
regarding the choice of calculation method: the
direct integration of motion equations, the
impulse method, and the quasi-static method. In
Ukrainian standards [5], the quasi-static
method is adopted. This approach is the
simplest, though the least precise, but it allows
relatively rapid determination of results. In the
US standards [23, 24], the choice among direct
integration, impulse, or quasi-static methods
depends on the ratio of the positive phase
duration of the blast to the natural period of
structural vibration. Experimental and nume-
rical studies [9, 17, 26, 27] have demonstrated
the influence of various factors on the
resistance of reinforced concrete and steel
structures to blast wave action [7, 8, 16, 19].
The effect of damping devices on the system
response to blast waves has also been
investigated, considering different models and
various pressure waveform shapes [3, 6,11, 20].

In many calculation methods, complex
multi-degree-of-freedom systems are reduced
to a single-degree-of-freedom system, and the
solution of a known differential equation is
considered, the right-hand side of which
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depends on the adopted blast wave pressure
profile.

It is known that, although the duration of
blast wave action is extremely short [2, 12, 13,
25], the pressure does not reach different points
of the structure simultaneously. The extent to
which this affects the response of the dynamic
system is an important consideration for
accurate structural analysis.

PURPOSE AND METHODS

An important and theoretically
underexplored issue is the investigation of the
influence of differing arrival times of blast-
wave pressure at various points of a structure,
which may affect the displacements and
internal forces in structural elements either
positively or negatively. It is necessary to
determine which analytical method should be
used for structural assessment in such cases. In
view of the above, the aim of this article is to
analyze the effect of blast-pressure arrival time
at different points of a structure and to develop
a methodology for performing such
calculations.

The study employs a comprehensive set of
methods aimed at an in-depth analysis of the
behavior of protective structures subjected to
blast loading that reaches different points at
different times. The core of the work is an
analytical approach to solving the differential
equations of motion describing the vibrations of
an SDOF system. For each time interval in
which a force with a distinct arrival time acts, a
phase-by-phase calculation method is applied:
the equation of motion is solved separately for
each phase, with the final conditions of the
preceding phase—displacement and velocity—
used as the initial conditions for the subsequent
one. This enables a sequential and accurate
determination of all constants of the particular
and general solutions and provides a complete
time-dependent response of the system
regardless of the number of loading intervals.

For  multi-degree-of-freedom  systems,
modal analysis is employed, allowing the
complex system to be represented as a set of
independent SDOF models. For each mode, the
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response is determined with consideration of
the differing force arrival times, after which the
modal displacements are superposed in the time
domain. The study provides a detailed
justification for why time-domain summation
of modal responses is valid for linear systems,
while summation of the modal peak values
leads to erroneous results.

Additionally, a comparative analysis of
results obtained using different approaches is
performed, allowing the assessment of how
temporal mismatch in force application
influences the magnitude of the structural
response. For impulsive loads, analytical
expressions are derived for the total response to
a series of impulses arriving at different points
at different times. When necessary, the
analytical solutions can be validated through
direct numerical integration of the equations of
motion, providing a computational verification
of the accuracy of the proposed methodology.

This integrated methodological framework
enables a thorough investigation of the
influence of non-simultaneous blast-load
arrival on structural systems and establishes a
universal approach for their analysis and
design.

MAIN PART

Let a vertical cantilever be given, with n
lumped masses attached to it. It is known that
such a multi-mass system can be reduced to a
system with a single equivalent mass [2, 3, 16].
Let us consider this vertical cantilever of height
L as a single-degree-of-freedom system with an
equivalent mass m = meqv at its free end.

A force Fu(t) = P:(1 — t/r) acts on it at a
height a above ground level, and a force

F>(t) = P2(1 — t/r) acts at a height b, where
force F: begins to act at time t = 0, while force
F-is applied with a delay, at time ¢ = 6; (Fig. 1).

Given that the distance from the explosion
epicenter to different points along the height of
a structure varies, it is necessary to investigate
the extent to which the non-simultaneous
arrival of the blast wave affects the stress—strain
state of the system.
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Fig. 1 SDOF system diagram with differential arrival of dynamic forces
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If the cantilever is a homogeneous rod, the
equivalent mass is known to be determined by
the expression m.qv = 0.243 M,

where my, IS the total mass of the rod.

Several remarks should be made here.

1.A specified pressure is considered, and we
do not address which specific type of pressure
generates the forces F: and F>—whether
incident, reflected, etc.—because our primary
objective is to determine whether the delay in
force application has an influence or not.

2.We analyze a simple scheme with two
forces, because such a simplified model allows
us to clearly demonstrate this effect
numerically. The essence of the analysis does
not change when a different number of forces is
considered.

Let us perform the analysis on the basis of
the following theoretical approach.

The well-known differential equation
without damping takes the form:

where x = x(t) is the generalized coordinate,
taken here as the horizontal displacement of
mass m; k is the stiffness coefficient of the
cantilever, which in our case is k = 3-EJ /L’

where EJ is the bending stiffness of the rod,;
and Q(t) is the generalized force (the coefficient
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corresponding to the virtual displacement of the
generalized coordinate).

The delay of the second force, o, will be
considered smaller than the duration of the
positive phase of the blast wave, 1, as will be
briefly discussed below. At the beginning of the
calculation, the value of 6t can be chosen such
that ¢ = n-o.. Let us illustrate this with an
example where n = 4. In this case, several
phases of vibration must be considered:

Phase 1:

0 <t <ot— only force F; acts; F> = 0.

Phase 2:

ot <t <t — both forces F; and F: act;
however, the second force begins at ¢ = 6.

Phase 3:

7 <t <7+ d— only force F: acts;

Fi=0.

Phase 4:

t > 1 + ot — free vibration phase;

Fir=F,=0.

Taking into account the definition of the
generalized force Q(t), the differential equation
of motion (1) for all phases can be written as
follows:
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K+ X = i{F’l (1—£j¢(a) +P, (1—1}0(*))} 2)
m T T

where, as is known, o is the circular frequency;
@(a) and ¢(b) are the normalized displacements
at points a and b, corresponding to the
application points of forces F:; and F,
respectively, which are determined from the
assumed bending shape of the cantilever.

2(3L-y)

Ly
o0 =5 (3)

where y is the coordinate along the rod (see Fig.
1). Function (3) is chosen such that at
y = L we have ¢(y) = 1, and it corresponds to
the bending shape of a simple cantilever beam.

The general solution of the equation of
motion in each phase (i = /...4) is assumed in
the form:

x (t) =C,Cos(w-1)+C,,Sin(w-t)+ A +Bt  (4)

The particular solutions are expressed as
linear functions with undetermined
coefficients:

X (t)=A+B -t (5)
The constants A; and B; are determined
depending on the right-hand side of expression
(2) in each phase of vibration (see above). In the
fourth phase, the constants A4 and B4 are absent.
The constants C;,: and C;,2 are determined from

the initial conditions of each phase:
Phase 1: initial conditions are zero:

x(0)=0; %(0)=0

X+ o -X:%{F’l[l—;—ljgo(yl)ﬁ.

1

where y,, ..., y, are the distances from the base
of the cantilever to the force F,. In this case, the
equation (6) should be considered sequentially;
t; is the time at the beginning of the i-th segment
of the analysis of equation (6), which is
determined by the formula:

t=t-(i-1)J (7)
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Phase 2: initial conditions are:
X,(6)=%(5); %(58)=%(5)
Phase 3: initial conditions are:
X, (1) = %,(2); %,(z) =%,(7)
Phase 4: initial conditions are:
X (t+6)=x(+6); X (@+6)=X(z+5)

That is, the initial conditions for the i-th
phase are taken equal to the final values of
displacement and velocity from the (i—1)-th
phase, for which the solution has already been
obtained.

The problem is solved according to the
following algorithm:

In each phase, first, depending on the right-
hand side of (2) and assuming a particular
solution in the form of (5), the constants A; and
Bi are determined by equating coefficients of
like powers of t. Then, using the general
solution with the right-hand side (4) and
applying the initial conditions (see above), the
constants C,; and C;,> are determined. Having
all constants, all displacement values in each
phase are calculated. The initial conditions for
the next phase are the final conditions
(displacement and velocity) of the previous
phase. This procedure is repeated until the end
of the fourth phase.

For a larger number of forces Fi, F-, ... F,,
as well as for different durations of the positive
phase 7; of these forces, the essence of the
calculation does not change. In this case, the
differential equation (2) takes the form:

+P, (1—;—“}»@“)} 6)

n

That is, for each time segment, a new
variable t; is introduced. In this case, the right-
hand side of equation (6) will include the
number P; depending on the arrival time t; of
force F;, the durations of forces Fi, F>, ... Fii,
as well as times ti, ti, ... t.

The number of considered phases depends
on the number of segments dividing the total
time, #,, = n-ot. The initial conditions for each
i-th phase are taken as the final conditions
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(displacement and velocity of the mass) at the
end of the (i—1)-th phase.

It should be particularly noted that,
regardless of the number of segments, only one
differential equation (6) is solved in each phase,
with its own initial conditions and its own set of
forces F,. Therefore, the constants A; and B;
from the particular solution of the equation (see
expression 5) are determined each time. As a
result, the number of segments can be chosen
arbitrarily by the engineer, and there is no
particular  difficulty in the numerical
implementation of the calculation for a system
with many applied forces.

The problem is significantly simplified if the
loading is considered as an instantaneous
impulse. Then, if n impulses J;, J>, ... J, act

]1<l>( )

x(6) =

Under the action of n impulses, the initial
conditions for the n-th impulse are as follows:

x(n-8,) = ]1¢1 S n(@ - 8,) + ]1¢2

x(n-8,) = r];‘i’l

Cos(w-6;) + -+ +——

where ¢,...,p, denote the functions (3)
corresponding to the locations of the 1st ... n-
th impulses.

Thus, at the moment the impulse with index
k is applied, the initial displacement is equal to
the sum of the displacements of the free
vibrations from impulses /, ..., k-1 according to
the first expression in (8), and the initial
velocity is equal to the sum of the velocities
from these impulses according to the second
expression in (8), plus the initial velocity
generated by the k-th impulse itself.

It is known that if the system is considered
not as one with a single equivalent mass but as
one with the actual number of masses equal to
n, then after modal analysis one can obtain n
separate differential equations of type (1).
Solving them yields a set of expressions x;(t) for
each mode of vibration. The total response of
the system (for example, the total displacement

22

% sinw - 6.;1(5,) =12

Sm(w 2 6:)+.. +

sequentially, each applied after a time interval
oy, the differential equation takes the form of
equation (1) with a zero right-hand side. The
solutions of these equations for the action of the
I-th impulse are expressed as:

¢>l

xi(t) =

x(t) did Cos(a) t)

S in(w - t); ()

The difference for all the equations lies in
the initial conditions. Thus, for two impulses,
the initial conditions for the first impulse are
x(0) = 0; X(0) = ;p(a)/m, Where o) is
determined from expression (3). The initial
conditions for the second impulse are:

Cos(w - &;) +]2<i$b) ©)

]"qb” ~Sin(w -n - &) (10)

]n 1¢n 1 ]n¢n (11)

Cos(w-(n—1)-6;) +

of the i-th mass) is simply the sum of the
displacements xi(t) for all modes at the
considered time t.

Reducing a system with n masses to a system
with a single equivalent mass, as discussed
above, provides an approximate solution;
however, it allows the effect of delayed force
arrival to be taken into account.

Calculations show that, for a single-mass
system, the delay in force application does not
increase the system’s response. However, for
multi-mass systems, this effect may either
increase or decrease the total response. The
analysis of multi-mass systems can be
performed using the methodology developed
above, but with the application of modal
decomposition, where each mode is treated as
an SDOF system while still accounting for the
delayed arrival of forces.
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The methodology proposed above involves a
multiphase treatment of the problem. The use of
the Duhamel integral for solving the equations
of motion with forces applied at different times
makes it unnecessary to consider initial
conditions at each phase. Let us examine an
approach for analyzing a multi-mass system
subjected to impulses applied with time shifts
7, using the Duhamel integral. Since the
response maxima occur at different moments in

time, a simple summation of these maxima sum
t

1
t) =
n-(t) p—

T

where m. is the modal mass;
k. = m, w,?is the stiffness in the r-th mode.

Fi(r) = p(t - Tj)Aj (14)

where p(t) is the triangular impulse generated
by the blast wave; 7; is the arrival time of the
wave at node j; 4; is the area from which the
load is collected for that node.

1 (t) —

Let us introduce a new variable:
u=t—7j, dr=du (a7)

Po Aj(Pr(xj) ju*
1 (£) o i

where u*=min(t—1j, t+); is introduced;
@r —is the r-th mode shape.

Do Ajpr () j’t (1 ot
T

ISSN 2522-4182

not the maxima, but the modal responses
evaluated at the same time instant t. For the
mode with index r, we obtain the following
differential equation:

mn, + krnr = Fr(t); (12)

where 7, = 5,(t) is the generalized coordinate in
the r-th mode, determined by the well-known
Duhamel integral:

| F@sinoq - o 9

t
0,t >t,.
where po is the amplitude; ¢ is the duration of
the impulse.

Substituting into the Duhamel integral for a
single node j gives us the expression:

Tj) X sin(w,(t —1))dt
r (16)

Then we will have:

(1- %)sin(mr(t — 1)) — waw)de (18)

In addition, let us denote a=wr(t—7j). Then the
integral can be written as follows:

Jau) = [ (1= Esinge - o (19)
0 +

After expanding the integrand, applying

integration by parts, imposing the limits from 0

ISE I

J(a,u*) =

to u*, and performing the necessary trans-
formations, we finally obtain:

*

u

1
[cos(a — w - u*) — cosa] — t_(__ cos(d —w-u*) +

@ (20)

1 1
+Esin(a —w-u")— Esina)
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Then the final formula for the response in the r-
th mode takes the form:

1

M (8) = == FpoAjpr () (@, (t = =1),14) 1)

-

Let us now explain the reason why the
responses can be summed. Solution (12) is
presented in the form of (13). In this case, the

modal force is determined as the sum over the
segments:

N
B0 = ) Pys(e =), (22)

where P,.; = poA;dr(x;).
From the linearity of the integral, we have:

N t
ny(t) = Z il f S(t — 15) X sin(w,(t — 7))dr. (23)
= myy Jy
Yop (24)
Let us make the substitution u=r-7; and n(t) =Z X Jr(t— 1)),
obtain the shifted response function: = M @r
where:

min(&,t+)

J1(6) = fo

(25)

S(w) - sin(w, (¢ —u))du,

Jr(§)=0mpug <0 (26)

Here, J,(¢) is a time-dependent function. It is
zero before arrival and then varies according to
a sine function.

We sum the values of these functions at the
same time t:

m® =S Lh -1 ()

N

This summation is correct for a linear
system.
In the considered method, J is not a number, but
a time-dependent function (a convolution
kernel). To avoid interpreting J as a number, we
fix the notation as follows:

A, (x;
ne(6) = Zw&h(t—ﬁ):

i—1

Wr

' min(§,t+)
J,(©) = HE) fo SQsin(w, (€ — )

where H&) is the well-known unit Heaviside
function. For a very short pulse wt.«1, for J&)
we obtain:

J(©) = Zsin(,HHE  (@8)

24

and then we have:

Prj ty .
me0) = ) L sinw, (t ~ 1)) (29)
j=1 T
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m®) = Y S (e = 1)) 1,00 -

= m,w, 2

Thus, in the form (29) we obtained the total
response of the system without performing a
phase-by-phase computation, as was shown
above. This is the advantage of such an
approach. However, for calculations that take
the system’s nonlinearity into account, one
should still use the phase-by-phase procedure,
in which, as shown earlier, the initial conditions
of each subsequent phase are taken as the final
conditions of the preceding phase of
oscillations.

Example of Calculation.

A vertical three-story cantilever beam is
considered, with lumped masses m=3000 kg at

ISSN 2522-4182

P.sin(w,t) (30)

T

each floor level. The applied forces are
arranged as shown in Fig. 2. The cross-section
IS bxh=0.5x1m, the modulus of elasticity is
E=25,000 MP, and the TNT charge mass is
W=100 kg. For the first force, the following
parameters are adopted: P1=1184.67 KN,
t01=0.00715 s (the duration of force P1), ta1=0s
(arrival time of Py). For the second force, the
parameters are: P»=725.25 kN, t0,=0,00737 s
(the duration of the force P:), ta2=0.001 s
(arrival time of P;). For the third force, the
adopted parameters are: P3=303.66 kN,
t03=0,00781 s (the duration of force P3),
ta3=0.004 s (arrival time of Pa).

3000 |, 3000 ], 3000
9000

15000

Fig. 2 Diagram of a single-mass system subjected to dynamic forces with different arrival times
Puc. 2 Cxema cuctemu 3 OJIHIEIO MAcoOIO 3 PI3HUM MPUXOA0M JUHAMIYHUX CHII

Solution.The fundamental vibration period
of the cantilever beam shown in Fig. 2 is
T=0.191s. The arrival times of forces P2 and P3
are tA2=0.001 s<< 7= 0.191 s and ta3=0.004 s<
«<T = 0.191 s respectively. Therefore, the
internal force values in the beam for the case of
simultaneous arrival of the forces and for the
case with the specified delays will be
practically identical.
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In the analysis of the beam under the
assumption of simultaneous force arrival, the
computed maximum bending moment at the
fixed support is Mmax=280 kN-m. When the
delay in force application is taken into account
using the proposed methodologies, the
maximum bending moment is obtained as
283.26 kN-m, corresponding to a relative error
of 1.15%.

When the force arrival times are increased to
ta2=0.004 s and ta3=0.008 s, the calculations
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yield a bending moment of 341.27 kN-m , with
a relative error of 21.88%.

Further increasing the arrival times to
tA>=0.008 s and ta3=0.016 s results in a bending
moment of 310.56 kN-m, corresponding to a
relative error of 10.9%.

For the arrival times ta2=T/6=0.0318 s and,
tas=T/3=0.0637 s, the calculations vyield a
bendingr moment of 270.87 kN'm,
corresponding to a relative error of —3.37%.

For the arrival times ta,=T/3=0.0637 s and
tas=T/2=0.0955 s, the bending moment is
251.45 kN-m, with a relative error of —11.14%.

Thus, we have demonstrated that accounting
for delayed force arrival on subsequent floors
may lead to either an increase or a decrease in
the dynamic internal forces. This effect depends
on factors such as the duration of the positive
phase of the pressure, the delay time of the
forces, and the vibration period of the system.

CONCLUSIONS AND
RECOMMENDATIONS

The proposed methodology for analyzing
structural response under blast loading accounts
for the non-simultaneous arrival of the blast
wave at different points of the structure. The
maximum response may occur during different
phases of the mass motion. A phase-by-phase
analysis is presented, in which the initial
conditions of each subsequent phase are taken
as the final conditions of the previous vibration
phase. An analytical expression for the total
response under multiple impulses acting on
different masses of the system at different times
is also derived. It is demonstrated why, in linear
systems, the superposition of modal responses
at a specific moment of vibration is valid. For
SDOF systems, the influence of force delay has
a minor effect on the system’s response.

However, for multi-mass systems, the effect
of delayed forces may lead either to an increase
or a decrease in the overall response, depending
on the ratio #/T and the delay time.
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BIIJIUB 3AIII3BHEHHSA ITPUXOY
BUBYXOBOI XBUJII HA ITMHAMIUHY
MOBEAIHKY 3AXHMCHOI CIIOPYJIA

Anamoniu IIEPEJIBMYTEP
Tansm A3130B
JImumpo KOYKAPHOB
Hamanis CPIFPHAK

AHoTaunis. B crarTi pO3rIHYTO METOIMKH
PO3paxyHKy 3aXHMCHUX CHOPYZA 3a il BHOYX0OBOi
XBHWI, TUCK SKOI MPUXOIUTH JI0 Pi3HUX TOYOK B
pisHnit wac. PosrmgHyro modazoBuit  cmoci6
PO3paxyHKy, KOJH Jil0 cepii cui 3 pi3HUM 4Yacom
MIPUXOY PO3TIIIAIOTE K OKpeMi (pa3u KOJMBaHb.
3a moyaTKoBi yMOBH MOTOYHOI (ha3u MPUIMAIOTHCS
KiHIIEBI yMOBH (HEpEeMIIIeHHS 1 MIBUAKOCTI)
nornepeansoi Gaszu. JJoknagHo po3risIHYyTO CUCTEMY
3 omHiero mMacoro (SDOF-cucremy), Ha SKy IifOThH
CHJIM 3 pi3HMM 4acoM mpuxony. Ha xoxHiit dasi
CIIOYATKy B 3aJeKHOCTI BiX TpaBoi YaCTHHH
BijoMOro Au(epeHiadbHOTO PiBHIHHS 3HAXOIATh
KOHCTaHTH YaCTUHHOTO 1 3arajibHOTO pIMIEHHS
mudepenuiansHoro  piBHsHHA ~ SDOF-cuctemu.
Marodi BCi KOHCTAHTH, BU3HAYAIOTh BCl 3HAUCHHS
nepeMileHb Ha KOXHiN (asi.

[Tokazano, MmO TmepeBara TAaKOro MigXOIy
NOJISIrae B TOMY, IO HE3BaKarouu Ha OyIb SKY
KUIBKICTh JIJISTHOK, Ha SIKI IIFOTh CHJIU B Pi3HHIA Yac,
Ha KOXHI a3l BHUpINIYEThCH JUINE OJHE
IudepeHLialbHe PIBHAHHS 31 CBOIMHU MMOYAaTKOBUMH
yMOBaMH i1 cBoiM Habopom cuil. ToMy KOKHUH pa3
3HAXOAATBCSI CBOi KOHCTaHTH 3 YaCTHHHOTO
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pilIeHHsT Ta 3araJlbHOTO DINlIEHb PIiBHAHHA. Tomy
KUJIBKICTh ITUISHOK MOKe OyTH BU3HaueHa Oynb
KO0 Ha JYMKY IHXKEHepa 1 SKOiCh CKJIagHOCTI B
YUCEIbHIM peanmizamii pO3paxyHKy CUCTeMa 3
OaraTbMa poO3IJIAyBaHUMHU CUIIAMHU HEMAE.

ITokazaHo, MmO A7 OAHOMAcOBOI CHCTEMH
PI3HMIA Yac MPUXOIH JHHAMITHOT CHIIH HE 301ITbIITy€E
BIAITYK CHCTEMH, ane TakKa cxema
BUKOPUCTOBYETBCS, KOJIM 0araroMacoBy CHCTEMY
32 JONOMOTOI0  MOJAIBHOTO  PO3KIIAJCHHS
posrmsimatote sk SDOF-cucremy s KOXHOI
OKpeMOi MOIOM 3 BpPaxyBaHHSAM PIi3HOTO 4acy
MPUXOy CHJH, a TOTIM CKJIaJaloTh BIATYKH
npocTuM migcymoByBaHHsM. llokazano, oMy B
TMHIMHUX CHCTEMax IiJCYMOBYBaHHS MOJaJbHUX
BIATyKIB B KOHKPETHHH 4Yac KOJIUBaHb €
NpaBWILHUM, ajle TpPOCTe  IiJCYMOBYBaHHS
MaKCHMAJIBHUX BiATYKIB HE € NPABUIIbHUM.

[Mokazano, 1m0 mo¢a3oBUil PO3MIIA]] KOJUBAHb
CUCTEMHU € TPaBHJIBHHUM, aje OiLIbIIl TPOMI3IKUM.
Jns GaratomMacoBHX CHCTEM 3a [Iii IMITYJIBCY
HAaBEJCHO aHAIITHYHY (QOpMYyly CyMapHOTO
BIITYKYy Ha IMITyJIbCH, SIKi TPUXOIATH JO Pi3HUX
TOYOK B pi3HWH dac. llpm mpoMy pO3IIIIHYTO
TPUKYTHUH IMIYJIbC 3 KIHIIEBUM YacOM Jii, a TAKOXK
MUTTEBHN IMITYJIBC.

Karwouosi ciioBa: BuOyxosa xBuilsi; (paza KOJMBaHb;
SDOF-cucrema; PiBHSHHS KOJIMBaHb;
IMITyJIbC.
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