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Abstract.The article examines methods for 

calculating protective structures under the action of 

a blast wave, the pressure of which reaches different 

points at different times. A phase-by-phase 

calculation approach is considered, in which the 

action of a series of forces with different arrival 

times is treated as separate phases of vibration. The 

initial conditions of the current phase are taken as 

the final conditions (displacements and velocities) 

of the previous phase. 

The study focuses in detail on a single-degree-

of-freedom (SDOF) system subjected to forces with 

varying arrival times. At each phase, the constants 

of the particular and general solutions of the SDOF 

differential equation are determined based on the 

known right-hand side of the differential equation. 

Once all constants are obtained, the displacements 

at each phase are calculated. 

It is shown that the advantage of this approach 

lies in the fact that, regardless of the number of 

intervals during which forces act at different times, 

only one differential equation with its own initial 

conditions and force set is solved at each phase. 

Consequently, the constants for the particular and 

general solutions are determined for each phase in 

dependently. Therefore, the number of intervals 

can be arbitrarily chosen by the engineer, and there 

is no added complexity in the numerical 

implementation even for systems with multiple 

forces. 

It is demonstrated that for a single-mass system, 

different arrival times of the dynamic force do not 

increase the system response. However, this scheme  

 

 

is used when a multi-degree-of-freedom (MDOF) 

system is analyzed via modal decomposition, 

treating each mode as an SDOF system with 

consideration of the different force arrival times, 

and then summing the responses. 
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It is shown why, in linear systems, summing the 

modal responses at specific times is correct, 

whereas simply summing the maximum responses 

is not. 

The study confirms that the phase-by-phase 

consideration of system vibrations is correct, though 

more cumbersome. For multi-mass systems under 

impulsive loading, an analytical formula for the 

total response to impulses reaching different points 

at different times is provided. Both a triangular 

impulse with finite duration and an instantaneous 

impulse are considered. 

 

Keywords: blast wave; vibration phase; single-

degree-of-freedom (SDOF) system; equation of 

motion; impulse. 

 

INTRODUCTION 

 

Protective structures play an important role 

in safeguarding the population during air 

attacks. When conventional munitions are 

employed, protective structures must shield 

occupants from the blast wave and from 

fragmentation. This necessitates performing 

specific calculations, namely: 

• the analysis of the load-bearing and 

enclosing elements of protective structures 

under the action of a blast shock wave; 

• the analysis of the enclosing elements of 

protective structures under the action of 

fragments. 

It should be noted that there are also certain 

types of structures that are designed to 

withstand the direct impact of individual 

munitions. As a rule, these are specialized 

facilities of critical importance. Additional, 

specialized calculations are performed for such 

structures, which are not considered in this 

article. 

The structural analysis of the enclosing 

elements of protective buildings and facilities 

under blast-wave loading may be performed 

using one of three methods: 

• the direct integration method of the 
equations of motion; 

• the impulse (shock-impulse) method; 

• the quasi-static method. 

Each of these methods is characterized by its 

own type of loading. Recently, attention has 

also been drawn to the question of whether the 

non-uniform (non-simultaneous) arrival of 

blast-wave pressure affects the dynamic 

displacements and internal forces in protective-

structure components. 

 

ANALYSIS OF PREVIOUS RESEARCH 

 

A considerable number of studies have been 

devoted to the investigation of blast wave 

effects. One of the key issues is the analysis of 

the shape and function of blast wave pressure 

[2, 12, 25]. In calculations, including those 

specified in regulatory documents, both 

curvilinear and simplified linear functions are 

used [5, 23, 24]. Additionally, computational 

tools for determining blast wave parameters are 

also available [13]. 

Research has shown that accounting for the 

negative phase of pressure leads to changes in 

dynamic forces in elements of protective 

structures [1, 14]. However, in many regulatory 

documents, calculations are performed 

considering only the positive phase of blast 

wave pressure. 

There is extensive discussion and debate 

regarding the choice of calculation method: the 

direct integration of motion equations, the 

impulse method, and the quasi-static method. In 

Ukrainian standards [5], the quasi-static 

method is adopted. This approach is the 

simplest, though the least precise, but it allows 

relatively rapid determination of results. In the 

US standards [23, 24], the choice among direct 

integration, impulse, or quasi-static methods 

depends on the ratio of the positive phase 

duration of the blast to the natural period of 

structural vibration. Experimental and nume-

rical studies [9, 17, 26, 27] have demonstrated 

the influence of various factors on the 

resistance of reinforced concrete and steel 

structures to blast wave action [7, 8, 16, 19]. 

The effect of damping devices on the system 

response to blast waves has also been 

investigated, considering different models and 

various pressure waveform shapes [3, 6,11, 20]. 

In many calculation methods, complex 

multi-degree-of-freedom systems are reduced 

to a single-degree-of-freedom system, and the 

solution of a known differential equation is 

considered, the right-hand side of which  
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depends on the adopted blast wave pressure 

profile. 

It is known that, although the duration of 

blast wave action is extremely short [2, 12, 13, 

25], the pressure does not reach different points 

of the structure simultaneously. The extent to 

which this affects the response of the dynamic 

system is an important consideration for 

accurate structural analysis. 

 

PURPOSE AND METHODS 

 

An important and theoretically 

underexplored issue is the investigation of the 

influence of differing arrival times of blast-

wave pressure at various points of a structure, 

which may affect the displacements and 

internal forces in structural elements either 

positively or negatively. It is necessary to 

determine which analytical method should be 

used for structural assessment in such cases. In 

view of the above, the aim of this article is to 

analyze the effect of blast-pressure arrival time 

at different points of a structure and to develop 

a methodology for performing such 

calculations. 

The study employs a comprehensive set of 

methods aimed at an in-depth analysis of the 

behavior of protective structures subjected to 

blast loading that reaches different points at 

different times. The core of the work is an 

analytical approach to solving the differential 

equations of motion describing the vibrations of 

an SDOF system. For each time interval in 

which a force with a distinct arrival time acts, a 

phase-by-phase calculation method is applied: 

the equation of motion is solved separately for 

each phase, with the final conditions of the 

preceding phase—displacement and velocity—

used as the initial conditions for the subsequent 

one. This enables a sequential and accurate 

determination of all constants of the particular 

and general solutions and provides a complete 

time-dependent response of the system 

regardless of the number of loading intervals. 

For multi-degree-of-freedom systems, 

modal analysis is employed, allowing the 

complex system to be represented as a set of 

independent SDOF models. For each mode, the 

response is determined with consideration of 

the differing force arrival times, after which the 

modal displacements are superposed in the time 

domain. The study provides a detailed 

justification for why time-domain summation 

of modal responses is valid for linear systems, 

while summation of the modal peak values 

leads to erroneous results. 

Additionally, a comparative analysis of 

results obtained using different approaches is 

performed, allowing the assessment of how 

temporal mismatch in force application 

influences the magnitude of the structural 

response. For impulsive loads, analytical 

expressions are derived for the total response to 

a series of impulses arriving at different points 

at different times. When necessary, the 

analytical solutions can be validated through 

direct numerical integration of the equations of 

motion, providing a computational verification 

of the accuracy of the proposed methodology. 

This integrated methodological framework 

enables a thorough investigation of the 

influence of non-simultaneous blast-load 

arrival on structural systems and establishes a 

universal approach for their analysis and 

design. 

 

MAIN PART 

 

Let a vertical cantilever be given, with n 

lumped masses attached to it. It is known that 

such a multi-mass system can be reduced to a 

system with a single equivalent mass [2, 3, 16]. 

Let us consider this vertical cantilever of height 

L as a single-degree-of-freedom system with an 

equivalent mass m = mₑqv at its free end. 

 A force F₁(t) = P₁(1 − t/τ) acts on it at a 

height a above ground level, and a force  

F₂(t) = P₂(1 − t/τ) acts at a height b, where 

force F₁ begins to act at time t = 0, while force 

F₂ is applied with a delay, at time t = δt (Fig. 1). 

Given that the distance from the explosion 

epicenter to different points along the height of 

a structure varies, it is necessary to investigate 

the extent to which the non-simultaneous 

arrival of the blast wave affects the stress–strain 

state of the system.
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Fig. 1 SDOF system diagram with differential arrival of dynamic forces  

Рис. 1 Схема системи з однією масою з різним приходом динамічних сил 

 

If the cantilever is a homogeneous rod, the 

equivalent mass is known to be determined by 

the expression mₑqv = 0.243·mₜₒₜ,  

where mₜₒₜ is the total mass of the rod. 

Several remarks should be made here. 

1.A specified pressure is considered, and we 

do not address which specific type of pressure 

generates the forces F₁ and F₂—whether 

incident, reflected, etc.—because our primary 

objective is to determine whether the delay in 

force application has an influence or not. 

2.We analyze a simple scheme with two 

forces, because such a simplified model allows 

us to clearly demonstrate this effect 

numerically. The essence of the analysis does 

not change when a different number of forces is 

considered. 

Let us perform the analysis on the basis of 

the following theoretical approach. 

The well-known differential equation 

without damping takes the form: 

( )m x k x Q t     
 

(1) 

where x = x(t) is the generalized coordinate, 

taken here as the horizontal displacement of 

mass m; k is the stiffness coefficient of the 

cantilever, which in our case is k = 3·EJ / L³, 

where EJ is the bending stiffness of the rod; 

and Q(t) is the generalized force (the coefficient 

corresponding to the virtual displacement of the 

generalized coordinate). 

 

The delay of the second force, δt, will be 

considered smaller than the duration of the 

positive phase of the blast wave, τ, as will be 

briefly discussed below. At the beginning of the 

calculation, the value of δt can be chosen such 

that τ = n·δt. Let us illustrate this with an 

example where n = 4. In this case, several 

phases of vibration must be considered: 

Phase 1:  

0 ≤ t ≤ δt — only force F₁ acts; F₂ = 0. 

Phase 2:  

δt ≤ t ≤ τ — both forces F₁ and F₂ act; 

however, the second force begins at t = δt. 

Phase 3: 

τ ≤ t ≤ τ + δt — only force F₂ acts;  

F₁ = 0. 

Phase 4:  

t ≥ τ + δt — free vibration phase;  

F₁ = F₂ = 0. 

 

Taking into account the definition of the 

generalized force Q(t), the differential equation 

of motion (1) for all phases can be written as 

follows:
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(2) 

 

where, as is known, ω is the circular frequency; 

φ(a) and φ(b) are the normalized displacements 

at points a and b, corresponding to the 

application points of forces F₁ and F₂, 

respectively, which are determined from the 

assumed bending shape of the cantilever. 

 

 
(3) 

 

where y is the coordinate along the rod (see Fig. 

1). Function (3) is chosen such that at  

y = L we have φ(y) = 1, and it corresponds to 

the bending shape of a simple cantilever beam. 

The general solution of the equation of 

motion in each phase (i = 1…4) is assumed in 

the form: 

 
(4) 

The particular solutions are expressed as 

linear functions with undetermined 

coefficients: 

 

 

(5) 

The constants Aᵢ and Bᵢ are determined 

depending on the right-hand side of expression 

(2) in each phase of vibration (see above). In the 

fourth phase, the constants A₄ and B₄ are absent. 

The constants Cᵢ,₁ and Cᵢ,₂ are determined from 

the initial conditions of each phase: 

Phase 1: initial conditions are zero:  

1 1
(0) 0; (0) 0x x   

Phase 2: initial conditions are: 

2 1 2 1
( ) ( ); ( ) ( )

t t t t
x x x x      

Phase 3: initial conditions are: 

3 2 3 2
( ) ( ); ( ) ( )x x x x      

Phase 4: initial conditions are: 

. 

That is, the initial conditions for the i‑th 

phase are taken equal to the final values of 

displacement and velocity from the (i−1)‑th 

phase, for which the solution has already been 

obtained. 

The problem is solved according to the 

following algorithm: 

In each phase, first, depending on the right-

hand side of (2) and assuming a particular 

solution in the form of (5), the constants Aᵢ and 

Bᵢ are determined by equating coefficients of 

like powers of t. Then, using the general 

solution with the right-hand side (4) and 

applying the initial conditions (see above), the 

constants Cᵢ,₁ and Cᵢ,₂ are determined. Having 

all constants, all displacement values in each 

phase are calculated. The initial conditions for 

the next phase are the final conditions 

(displacement and velocity) of the previous 

phase. This procedure is repeated until the end 

of the fourth phase. 

For a larger number of forces F₁, F₂, … Fₙ, 

as well as for different durations of the positive 

phase τᵢ of these forces, the essence of the 

calculation does not change. In this case, the 

differential equation (2) takes the form: 

 

 

(6) 

where y₁, …, yₙ are the distances from the base 

of the cantilever to the force Fₙ. In this case, the 

equation (6) should be considered sequentially; 

tᵢ is the time at the beginning of the i‑th segment 

of the analysis of equation (6), which is 

determined by the formula: 

 

 
(7) 

 

That is, for each time segment, a new 

variable tᵢ is introduced. In this case, the right-

hand side of equation (6) will include the 

number Pᵢ depending on the arrival time tᵢ of 

force Fᵢ, the durations of forces F₁, F₂, … Fᵢ₋₁, 

as well as times tᵢ₊₁, tᵢ₊₂, … tₙ. 

The number of considered phases depends 

on the number of segments dividing the total 

time, tₜₒₜ = n·δt. The initial conditions for each 

i-th phase are taken as the final conditions 

2

1 2
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m
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(displacement and velocity of the mass) at the 

end of the (i−1)-th phase. 

It should be particularly noted that, 

regardless of the number of segments, only one 

differential equation (6) is solved in each phase, 

with its own initial conditions and its own set of 

forces Fᵢ. Therefore, the constants Aᵢ and Bᵢ 

from the particular solution of the equation (see 

expression 5) are determined each time. As a 

result, the number of segments can be chosen 

arbitrarily by the engineer, and there is no 

particular difficulty in the numerical 

implementation of the calculation for a system 

with many applied forces. 

The problem is significantly simplified if the 

loading is considered as an instantaneous 

impulse. Then, if n impulses J₁, J₂, … Jₙ act 

sequentially, each applied after a time interval 

δt, the differential equation takes the form of 

equation (1) with a zero right-hand side. The 

solutions of these equations for the action of the 

i-th impulse are expressed as: 

 

𝑥𝑖(𝑡) =
𝐽𝑖 ⋅ 𝜙𝑖

𝑚 ⋅ 𝜔
𝑆𝑖𝑛(𝜔 ⋅ 𝑡); 

𝑥̇𝑖(𝑡) =
𝐽𝑖⋅𝜙𝑖

𝑚
𝐶𝑜𝑠(𝜔 ⋅ 𝑡)   

(8) 

 

The difference for all the equations lies in 

the initial conditions. Thus, for two impulses, 

the initial conditions for the first impulse are 

𝑥(0) = 0;  ẋ(0) = 𝐽1𝜙(𝑎)/𝑚, where φ(a) is 

determined from expression (3). The initial 

conditions for the second impulse are: 

 

𝑥(𝛿𝑡) =
𝐽1𝜙(𝑎)

𝑚 ⋅ 𝜔
𝑆𝑖𝑛(𝜔 ⋅ 𝛿𝑡); 𝑥̇(𝛿𝑡) =

𝐽1𝜙(𝑎)

𝑚 ⋅ 𝜔
𝐶𝑜𝑠(𝜔 ⋅ 𝛿𝑡) +

𝐽2𝜙(𝑏)

𝑚
 

(9) 

Under the action of n impulses, the initial 

conditions for the n-th impulse are as follows: 

 

𝑥(𝑛 ⋅ 𝛿𝑡) =
𝐽1𝜙1

𝑚 ⋅ 𝜔
𝑆𝑖𝑛(𝜔 ⋅ 𝛿𝑡) +

𝐽1𝜙2

𝑚 ⋅ 𝜔
𝑆𝑖𝑛(𝜔 ⋅ 2 ⋅· 𝛿𝑡)+. . . +

𝐽𝑛𝜙𝑛

𝑚 ⋅ 𝜔
𝑆𝑖𝑛(𝜔 ⋅ 𝑛 ⋅ 𝛿𝑡) (10) 

𝑥̇(𝑛 ⋅ 𝛿𝑡) =
𝐽1𝜙1

𝑚 ⋅ 𝜔
𝐶𝑜𝑠(𝜔 ⋅ 𝛿𝑡) + ⋯ +

𝐽𝑛−1𝜙𝑛−1

𝑚 ⋅ 𝜔
𝐶𝑜𝑠(𝜔 ⋅ (𝑛 − 1) ⋅ 𝛿𝑡) +

𝐽𝑛𝜙𝑛

𝑚
 (11) 

where φ₁,…,φₙ denote the functions (3) 

corresponding to the locations of the 1st … n-

th impulses. 

Thus, at the moment the impulse with index 

k is applied, the initial displacement is equal to 

the sum of the displacements of the free 

vibrations from impulses 1,…, k–1 according to 

the first expression in (8), and the initial 

velocity is equal to the sum of the velocities 

from these impulses according to the second 

expression in (8), plus the initial velocity 

generated by the k-th impulse itself. 

It is known that if the system is considered 

not as one with a single equivalent mass but as 

one with the actual number of masses equal to 

n, then after modal analysis one can obtain n 

separate differential equations of type (1). 

Solving them yields a set of expressions xᵢ(t) for 

each mode of vibration. The total response of 

the system (for example, the total displacement 

of the i-th mass) is simply the sum of the 

displacements xᵢ(t) for all modes at the 

considered time t. 

Reducing a system with n masses to a system 

with a single equivalent mass, as discussed 

above, provides an approximate solution; 

however, it allows the effect of delayed force 

arrival to be taken into account. 

Calculations show that, for a single-mass 

system, the delay in force application does not 

increase the system’s response. However, for 

multi-mass systems, this effect may either 

increase or decrease the total response. The 

analysis of multi-mass systems can be 

performed using the methodology developed 

above, but with the application of modal 

decomposition, where each mode is treated as 

an SDOF system while still accounting for the 

delayed arrival of forces.
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The methodology proposed above involves a 

multiphase treatment of the problem. The use of 

the Duhamel integral for solving the equations 

of motion with forces applied at different times 

makes it unnecessary to consider initial 

conditions at each phase. Let us examine an 

approach for analyzing a multi-mass system 

subjected to impulses applied with time shifts 

τᵢ, using the Duhamel integral. Since the 

response maxima occur at different moments in 

time, a simple summation of these maxima sum 

not the maxima, but the modal responses 

evaluated at the same time instant t. For the 

mode with index r, we obtain the following 

differential equation: 

 

𝑚𝑟𝜂¨𝑟 + 𝑘𝑟𝜂𝑟 = 𝐹𝑟(𝑡), (12) 

 

where ηᵣ = ηᵣ(t) is the generalized coordinate in 

the r-th mode, determined by the well-known 

Duhamel integral:

𝜂𝑟(𝑡) =
1

𝑚𝑟𝜔𝑟
∫ 𝐹𝑟(𝜏)𝑠𝑖𝑛(𝜔𝑟(𝑡 − 𝜏))𝑑𝜏.

𝑡

0

 (13) 

where mᵣ is the modal mass; 

kᵣ = mᵣ ωᵣ² is the stiffness in the r-th mode. 

 

𝐹𝑗(𝜏) = 𝑝(𝑡 − 𝜏𝑗)𝐴𝑗 (14) 

 

where p(t) is the triangular impulse generated 

by the blast wave; τⱼ is the arrival time of the 

wave at node j; Aⱼ is the area from which the 

load is collected for that node. 

 

𝑝(𝑡) = {
𝑝0 (1 −

𝑡

𝑡+
) , 0 ≤ 𝑡 ≤ 𝑡+

0, 𝑡 > 𝑡+.
 

 

(15) 

where p₀ is the amplitude; t₊ is the duration of 

the impulse. 

 

Substituting into the Duhamel integral for a 

single node j gives us the expression: 

 

𝜂𝑟𝑗(𝑡) =
𝑝0 𝐴𝑗𝜑𝑟(𝑥𝑗)

𝑚𝑟𝜔𝑟
 ∫ (1 −

𝑡 − 𝜏𝑗

𝑡+
)

𝑡

𝜏𝑗

× 𝑠𝑖𝑛(𝜔𝑟(𝑡 − 𝜏))𝑑𝜏 (16) 

Let us introduce a new variable: 

u=τ−τj, dτ=du (17) 

Then we will have: 

 

 

𝜂𝑟𝑗(𝑡) =
𝑝0 𝐴𝑗𝜑𝑟(𝑥𝑗)

𝑚𝑟𝜔𝑟
 ∫ (1 −

𝑢

𝑡+
)

𝑢∗

0

𝑠𝑖𝑛(𝜔𝑟(𝑡 − 𝜏𝑗) − 𝜔𝑟𝑢)𝑑𝜏 (18) 

where u∗=min(t−τj, t+); is introduced;  
φr –is the r-th mode shape.  

In addition, let us denote α=ωr(t−τj). Then the 

integral can be written as follows: 

 

𝐽(𝛼, 𝑢∗) = ∫ (1 −
𝑢

𝑡+
)𝑠𝑖𝑛(𝛼 − 𝜔𝑟𝑢)𝑑𝑢

𝑢∗

0

 (19) 

After expanding the integrand, applying 

integration by parts, imposing the limits from 0 

to u*, and performing the necessary trans-

formations, we finally obtain: 

 

𝐽(𝛼, 𝑢∗) =
1

𝜔
 [cos (𝛼 − 𝜔 ∙ 𝑢∗) − 𝑐𝑜𝑠𝛼] −

1

𝑡+
(−

𝑢∗

𝜔
cos(𝛼 − 𝜔 ∙ 𝑢∗) + 

+
1

𝜔2
𝑠𝑖𝑛(𝛼 − 𝜔 ∙ 𝑢∗) −

1

𝜔2
𝑠𝑖𝑛𝛼) 

(20) 
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Then the final formula for the response in the r-

th mode takes the form: 

 

 

𝜂𝑟(𝑡) =
1

𝑚𝑟𝜔𝑟
∑𝑝0𝐴𝑗𝜑𝑟(𝑥𝑗) ∙ 𝐽(𝜔𝑟(𝑡 − −𝜏𝑗), 𝑢𝑗

∗)              (21) 

Let us now explain the reason why the 

responses can be summed. Solution (12) is 

presented in the form of (13). In this case, the 

modal force is determined as the sum over the 

segments: 

𝐹𝑟(𝑡) = ∑ 𝑃𝑟𝑗𝑆(𝑡 − 𝜏𝑗)

𝑁

𝑖=1

,   (22) 

where 𝑃𝑟𝑗 = 𝑝0𝐴𝑗𝜙𝑟(𝑥𝑗). 

From the linearity of the integral, we have: 

 

𝜂𝑟(𝑡) = ∑
𝑃𝑟𝑗

𝑚𝑟𝜔𝑟
∫ 𝑆(𝜏 − 𝜏𝑗) ×

𝑡

0

𝑁

𝑖=1

𝑠𝑖𝑛(𝜔𝑟(𝑡 − 𝜏))𝑑𝜏. (23) 

 

Let us make the substitution u=τ-τj and 

obtain the shifted response function: 

 

𝜂𝑟(𝑡) = ∑
𝑃𝑟𝑗

𝑚𝑟𝜔𝑟

𝑁

𝑖=1

𝐽𝑟(𝑡 − 𝜏𝑗), 
(24) 

where: 

 

𝐽𝑟(𝜉) = ∫ 𝑆(𝑢) ∙ 𝑠𝑖𝑛(𝜔𝑟(𝜉 − 𝑢))𝑑𝑢,
𝑚𝑖𝑛(𝜉,𝑡+)

0

 
 (25) 

𝐽𝑟(𝜉) ≡ 0 при 𝜉 < 0 (26) 

Here, Jᵣ(ξ) is a time-dependent function. It is 

zero before arrival and then varies according to 

a sine function. 

We sum the values of these functions at the 

same time t: 

𝜂𝑟(𝑡) = ∑
𝑃𝑟𝑗

𝑚𝑟𝜔𝑟
𝐽𝑟(𝑡 − 𝜏𝑗)                                    

 

(27) 

This summation is correct for a linear 

system. 

In the considered method, J is not a number, but 

a time-dependent function (a convolution 

kernel). To avoid interpreting J as a number, we 

fix the notation as follows: 

𝜂𝑟(𝑡) = ∑
𝑝0𝐴𝑗𝜙𝑟(𝑥𝑗)

𝑚𝑟𝜔𝑟

𝑁

𝑖=1

𝐽𝑟(𝑡 − 𝜏𝑗), 

 𝐽𝑟(𝜉) = 𝐻(𝜉) ∫ 𝑆(𝑢)sin (𝜔𝑟(𝜉 − 𝑢))
𝑚𝑖𝑛(𝜉,𝑡+)

0

 

where H(ξ) is the well-known unit Heaviside 

function. For a very short pulse ωrt+≪1 , for Jr(ξ) 

we obtain: 

𝐽𝑟(𝜉) ≈
𝑡+

2
𝑠𝑖𝑛(𝜔𝑟𝜉)𝐻(𝜉) 

 

(28) 

and then we have: 

𝜂𝑟(𝑡) = ∑
𝑃𝑟𝑗

𝑚𝑟𝜔𝑟

𝑡+

2
𝑠𝑖𝑛(𝜔𝑟(𝑡 − 𝜏𝑗))

𝑁

𝑗=1

 

 
 

(29) 
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𝜂𝑟(𝑡) = ∑
𝑃𝑟𝑗

𝑚𝑟𝜔𝑟

𝑡+

2
si n (𝜔𝑟(𝑡 − 𝜏𝑗))

𝑁

𝑗=1

𝜂𝑟(𝑡) =
1

𝑚𝑟𝜔𝑟
𝑃𝑟𝑠𝑖𝑛(𝜔𝑟𝑡) (30) 

Thus, in the form (29) we obtained the total 

response of the system without performing a 

phase-by-phase computation, as was shown 

above. This is the advantage of such an 

approach. However, for calculations that take 

the system’s nonlinearity into account, one 

should still use the phase-by-phase procedure, 

in which, as shown earlier, the initial conditions 

of each subsequent phase are taken as the final 

conditions of the preceding phase of 

oscillations. 

 

Example of Calculation. 

 

A vertical three-story cantilever beam is 

considered, with lumped masses m=3000 kg at 

each floor level. The applied forces are 

arranged as shown in Fig. 2. The cross-section 

is  b×h=0.5×1 m, the modulus of elasticity is 

E=25,000 MP, and the TNT charge mass is 

W=100 kg. For the first force, the following 

parameters are adopted: P1=1184.67 kN, 

t01=0.00715 s (the duration of force P1), tA1=0 s 
(arrival time of P1). For the second force, the 

parameters are: P2=725.25 kN, t02=0,00737 s 

(the duration of the force P₂), tA2=0.001 s 

(arrival time of P2). For the third force, the 

adopted parameters are: P3=303.66 kN, 
t03=0,00781 s (the duration of force P3), 
tA3=0.004 s (arrival time of P3). 

 

 

 
 

Fig. 2 Diagram of a single-mass system subjected to dynamic forces with different arrival times 

Рис. 2 Схема системи з однією масою з різним приходом динамічних сил 

 

Solution.The fundamental vibration period 

of the cantilever beam shown in Fig. 2 is 

T=0.191 s. The arrival times of forces P2 and P3 

are tA2=0.001 s Т= 0.191 s  and  tA3=0.004 s 

Т = 0.191 s respectively. Therefore, the 

internal force values in the beam for the case of 

simultaneous arrival of the forces and for the 

case with the specified delays will be 

practically identical. 

In the analysis of the beam under the 

assumption of simultaneous force arrival, the 

computed maximum bending moment at the 

fixed support is Mmax=280 kN·m. When the 

delay in force application is taken into account 

using the proposed methodologies, the 

maximum bending moment is obtained as 

283.26 kN·m, corresponding to a relative error 

of 1.15%. 

When the force arrival times are increased to 

tA2=0.004 s and tA3=0.008 s, the calculations 

1
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yield a bending moment of 341.27 kN·m , with 

a relative error of 21.88%. 

Further increasing the arrival times to 

tA2=0.008 s and tA3=0.016 s  results in a bending 

moment of 310.56 kN·m, corresponding to a 

relative error of 10.9%. 

For the arrival times tA2=T/6=0.0318 s  and, 

tA3=T/3=0.0637 s, the calculations yield a 

bending moment of 270.87 kN·m, 

corresponding to a relative error of –3.37%.  

For the arrival times tA2=T/3=0.0637 s and 

tA3=T/2=0.0955 s, the bending moment is 

251.45 kN·m, with a relative error of –11.14%. 

Thus, we have demonstrated that accounting 

for delayed force arrival on subsequent floors 

may lead to either an increase or a decrease in 

the dynamic internal forces. This effect depends 

on factors such as the duration of the positive 

phase of the pressure, the delay time of the 

forces, and the vibration period of the system. 

 

CONCLUSIONS AND 

RECOMMENDATIONS 

 

The proposed methodology for analyzing 

structural response under blast loading accounts 

for the non-simultaneous arrival of the blast 

wave at different points of the structure. The 

maximum response may occur during different 

phases of the mass motion. A phase-by-phase 

analysis is presented, in which the initial 

conditions of each subsequent phase are taken 

as the final conditions of the previous vibration 

phase. An analytical expression for the total 

response under multiple impulses acting on 

different masses of the system at different times 

is also derived. It is demonstrated why, in linear 

systems, the superposition of modal responses 

at a specific moment of vibration is valid. For 

SDOF systems, the influence of force delay has 

a minor effect on the system’s response.  

However, for multi-mass systems, the effect 

of delayed forces may lead either to an increase 

or a decrease in the overall response, depending 

on the ratio t₀/T and the delay time. 
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ВПЛИВ ЗАПІЗНЕННЯ ПРИХОДУ 

ВИБУХОВОЇ ХВИЛІ НА ДИНАМІЧНУ 

ПОВЕДІНКУ ЗАХИСНОЇ СПОРУДИ 
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Анотація. В статті розглянуто методики 

розрахунку захисних споруд за дії вибухової 

хвилі, тиск якої приходить до різних точок в 

різний час. Розглянуто пофазовий спосіб 

розрахунку, коли дію серії сил з різним часом 

приходу розглядають як окремі фази коливань.  

За початкові умови поточної фази приймаються 

кінцеві умови (переміщення і швидкості) 

попередньої фази. Докладно розглянуто систему 

з однією масою (SDOF-систему), на яку діють 

сили з різним часом приходу. На кожній фазі 

спочатку в залежності від правої частини 

відомого диференціального рівняння знаходять 

константи частинного і загального рішення 

диференціального рівняння SDOF-системи. 

Маючі всі константи, визначають всі значення 

переміщень на кожній фазі.  

Показано, що перевага такого підходу 

полягає в тому, що незважаючи на будь яку 

кількість ділянок, на які діють сили в різний час, 

на кожній фазі вирішується лише одне 

диференціальне рівняння зі своїми початковими 

умовами і своїм набором сил. Тому кожний раз 

знаходяться свої константи з частинного 

рішення та загального рішень рівняння. Тому 

кількість ділянок може бути визначена будь 

якою на думку інженера і якоїсь складності в 

чисельній реалізації розрахунку система з 

багатьма розглядуваними силами немає. 

Показано, що для одномасової системи 

різний час приходи динамічної сили не збільшує 

відгук системи, але така схема 

використовується, коли багатомасову систему 

за допомогою модального розкладення 

розглядають як SDOF-систему для кожної 

окремої моди з врахуванням різного часу 

приходу сили, а потім складають відгуки 

простим підсумовуванням. Показано, чому в 

лінійних системах підсумовування модальних 

відгуків в конкретний час коливань є 

правильним, але просте підсумовування 

максимальних відгуків не є правильним.  

Показано, що пофазовий розгляд коливань 

системи є правильним, але більш громіздким. 

Для багатомасових систем за дії імпульсу 

наведено аналітичну формулу сумарного 

відгуку на імпульси, які приходять до різних 

точок в різний час. При цьому розглянуто 

трикутний імпульс з кінцевим часом дії, а також 

миттєвий імпульс.  

 

Ключові слова: вибухова хвиля; фаза коливань; 

SDOF-система; рівняння коливань;  

імпульс. 
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