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Abstract. The article solves the problem of
selecting the optimal topology of a cantilever steel
I-beam with variable web height and flange width,
subject to deflection constraints and assuming an
optimal distribution of steel in each cross-section
based on strength conditions. The problem is solved
using the method of Lagrange multipliers. The
optimal design criterion is taken to be the objective
function minimizing steel consumption for the
structure. The condition of optimal distribution of
steel between the flanges and the web based on
strength criteria is adopted for each cross-section.
Possible deviations from the optimal ratio between
the flange area and the web area are accounted for
by an additional coefficient. The problem belongs
to nonlinear programming. The strength condition
of the web is considered inactive and is ensured by
structural measures (web stiffeners). Out-of-plane
stability of the beam (against lateral bending) is
provided by an appropriate system of horizontal
bracing along the flanges.

An analytical function describing the cross-
sectional variation along the length of a cantilever
tapered I-beam is obtained under the optimization
conditions for a uniformly distributed load and a
given relative design deflection. The derived
analytical function for the relative optimal height of
the 1-beam along the length of the structure is a
power-law function and depends on the load, the
deflection constraints, and the optimal or rational
distribution of steel in each cross-section. The
optimal height of the I-beam for the support section
(where the maximum bending moment occurs) is
determined under the conditions of the problem.

The identified patterns of variation in the optimal
beam height allow one to select the optimal
topology of the structure and to account for the
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possibility of higher stresses arising in sections of
smaller height. It is confirmed that the optimal
structural solution depends on the load distribution
law. The obtained results allow determining the
degree of variability of the cross-section height for
the optimal topology.

The analytical formulas derived for the optimal
height of a beam with variable flange width and
variable web height enable, at the first stage of
variant design, an evaluation of the efficiency of the
design solution.

Keywords:. elastic steel beam; cantilever beam;
steel I-beam with variable flange width and web
height; optimization by steel consumption under
deflection constraints; optimal I-beam cross-
sections by strength; Lagrange method; Euler’s
equation.

PROBLEM STATEMENT

The use of steel structures in the construction
of industrial and civil facilities underscores the
technological level of countries. The economic
feasibility of using steel structures has been
proven for long spans under substantial loads
when deflection constraints are taken into
account.
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Moreover, the recyclability of steel results in
an integrated reduction of total CO. emissions
over the service life of a building, which is of
significant environmental importance.

In the course of research into selecting the
optimal topology of an I-beam with a variable
web and flange cross-section along its length, a
number of constraints arise that must be
addressed in combination. First, in beams of
variable cross-section, the maximum stresses
do not always occur in the section where the
maximum bending moment acts [7,8,18,27].
Second, when solving problems considering
limitations on allowable deflections, it is
necessary to account for the variation of
stresses along the beam’s length. For steel I-
beams of constant cross-section, deflection
constraints do not depend on the steel strength
or the stress distribution along the length of the
structure. However, for beams with variable
cross-section, one must consider that
determining the minimum steel consumption is
related to both the stresses and the deflections
of the structure. Therefore, solving such a
problem requires additional information for
design. A traditional approach in optimal beam
design by steel consumption allows the optimal
web height of an I-beam to be determined using
analytical formulas derived in the process of
minimizing steel usage. This approach is based
on the idea that for a given design bending
moment in a certain cross-section, increasing
the web height increases the section modulus,
but the steel usage for the web increases as well.

Conversely, increasing the web height
reduces the steel consumption in the flanges of
the I-beam. However, both of these trends are
nonlinear. The contribution of the flanges to the
section modulus is greater than that of the web;
yet as the web height increases, the required
flange area decreases, and the flanges’
contribution to further increasing the section
modulus (due to the greater distance from the
neutral axis) diminishes. Therefore, there exists
a web height at which the steel consumption for
the profile is minimal. With a varying flange
width and web height, the search for a rational
(constrained optimal) web height is formulated
as a nonlinear programming problem aimed at
minimizing steel consumption with deflection
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constraints. Solving such an optimal design
problem is important for conceptual design
considering the requirements of two limit
states. Since the extremum of such problems is
rather flat, it is assumed that suitable plate
thicknesses for fabricating the beam are always
available from standard stock.

There are numerous studies related to
determining the cross-sections of I-beams with
variable web height. For example, beams have
been investigated under strength and stability
conditions under axial compression, including
potential loss of stability in the plane of bending
and the occurrence of bimoment stresses
[1,2,4,7,9,12,16,27,28].

However, research into the optimal design
of I-beams with variable web height is
developing further due to the widespread use of
such members in construction with steel
frameworks employing tapered members
[7,9,18,26,27,29].

The theory of optimal design and various
scientific approaches to finding optimal
structural solutions for steel structures are
presented in  works [3,18,23,28,29]. An
important factor in choosing the best structural
topology is the choice of the optimal design
criterion. The most relevant criterion is
minimizing steel consumption (material usage)
[2, 5, 7, 8, 14, 15,18, 21, 22, 23, 27, 29] An
optimality criterion based on energy principles
is substantiated in work [19]. Optimization by
cost and environmental impact has been studied
in [19,20,23,28]. The criterion of rational
design for combined roof trusses—based on
equalizing the bending moment-induced
stresses in the top chord of an I-section, taking
into account an energy criterion—is given in
[15,23]. The developed optimal design criteria
also extend to other efficient steel beam
structures: beams with corrugated webs [13,16,
25] and beams with perforated webs [13,16,30].

Methods used to select the optimal structural
topology are generally divided into analytical
approaches (with numerical investigations of
the obtained criteria and algorithmic constraint
functions) [5,7,8,15,16,23,30,31,32]. This
approach is used when it is possible to describe
the continuity of the discrete range of steel plate
stock and the interrelation between different
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parameters of cross-section variability and
topology along the beam’s length.

The use of genetic algorithms is widespread
and is among the most common approaches
[16,21,22,23,25, 30,31,32], However, finding a
global minimum requires additional research.
Furthermore, if there is a possibility of multiple
optimal solutions (differences on the order of
5-6% in steel consumption depending on the
discretization of available plate thicknesses), it
becomes necessary to further develop and adapt
existing optimization methods Since switching
to a different steel section (product range) can
lead to significant changes in the structural
topology, the finite element method—using
various algorithms—is typically applied at the
detailed design stage and yields reliable results,
although it is computationally intensive. This
approach is generally used during the working
design phase of steel structures. However,
reliable results can be obtained more rapidly if
the initial dimensions of the support cross-
section are rational (close to optimal). Such
input parameters can be derived from
generalized analytical studies in optimal design
conducted during the conceptual or preliminary
variant-based design stage of steel structures.

The relevance of developing optimal
design solutions for I-beams with variable
cross-section is also driven by the potential to
reduce costs under thermal loading during fire
conditions, as such optimization allows for
lower expenses on fire protection for critical
structural elements. [6,11,24].

In its general formulation, the task of finding
the optimal topology of a steel beam with
variable web height and variable flange width
is a multi-criteria optimization problem that
requires further development and adaptation of
existing optimization methods [14,23,28,30].
The relevance of such problems increases
particularly under the influence of dynamic
loading [5,17] and the activation of
displacement constraints [7,8,23,28,29,32].
Thus, the selection of an optimal topology for a
welded I-beam with variable flange width and
web height is a pressing and significant
research direction. The study of flexible
structural elements [10] should be considered
as a separate but related problem.
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The relevance of the stated problem and the
conducted analytical studies [7,8] may also be
applied to evaluate the rationality of the
structural solution under the development of
localized plastic deformations along the cross-
sectional height.

The literature review has shown that
insufficient analytical research has been
conducted in this area, despite its importance at
the initial stage of conceptual (variant-based)
design.

The relevance of the following research lies
in its ability to reveal the influence of stiffness
variation patterns on the stress—strain state of
the structure and to open new approaches for
solving subsequent rational design problems..

MAIN STUDY

The study addresses the problem of selecting
the optimal topology of an elastic steel 1-beam
with span length (I) featuring variable flange

width (brz, by , =b¢ o(AF »,2/1)*) and variable

web height (hz,). The origin of the Cartesian
coordinate system is placed at the center of the
largest cross-section. The web slenderness
varies along the beam’s length and is defined as
Aw= hotw The analysis of the beam’s bending
behavior is based on the Euler-Bernoulli
bending hypotheses [2,7,8].

The variation of the flange width and the
web height of the I-beam is assumed to follow
a power-law distribution with defined cross-
sectional gradients.

T R
bf,zzbfo(l"'?’be) _>|_=1_)bf,n=bfo(l+7fb)

fo

z z
h, :ho(l_?/hl_)s ——=1->h,=hy@-7,)%

I
hO
]/h—Shn.

To simplify notation, generalized functions
describing the variation of the cross-section are
introduced. The cross-sectional area of the steel
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I-beam is considered to depend on the variation
of the web height and flange width.

YA
h, =hg fh,z; fh,z ==, I_)S

— z
btz =biofbz: oz =AF 71 I—)s- (1)

2Af - 2bf,ztf ; A\N,Z = hztw-
AZ :2Af,Z+A\N,Z' AZ =2bf’ztf +r

In the formulas provided, the following
notations are used: t, — thickness of the I-beam

web, tr — thickness of the I-beam flange, | —
length of the beam, y, ,— gradient

(parameter) of flange width variation, bro —
flange width at z=0 (maximum width), btn —
flange width at z=l (minimum width), gepe3
t,=z/1- dimensionless longitudinal

coordinate of the cross-section, with the origin
located at the section of maximum size.

The geometric properties of the symmetric
cross-section of the steel I-beam under variable
flange width are denoted as follows: 1,;1,;1,,
- current moment of inertia of the cross-section,

initial (maximum) moment of inertia, minimum
moment of inertia along the beam length

he hdt,
L, =201yt )t IO"':E_Z-
2 3 2
|, =2b,t, h—°+ oty =h—°botf 1+ oty :
4 12 2 by t;

Accordingly, the variation of the moments of
inertia of the steel beam cross-sections with
changing flange width, relative to the main
centroidal axis Ox, can be expressed as follows:

2
w7 = + = +=
: 2 12 2 | t,h, 6
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It is important to assume a constant web
thickness, which is determined based on the
slenderness of the maximum cross-section.

ho
ty =—
A
In the generalized form, the moment of

inertia of the cross-section has the following
analytical expression.

3 hO tfbf,Oﬂ”W sz 1 (2)
Ix,z:(ho fhz) 5 . &
Zﬂ'W h0 fhz 6

The deflection constraint condition for the

structure is defined using Mohr’s integral,

which takes the following form.

2
MX,P,Z = Rl.l(l_Z/I)’ Mx :%fﬂ?,z'

\Z

m
m " m

o, {1_|_”J Ao (1-2/1)
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The methodology for determining the
minimum steel consumption under strength and
deflection constraints is developed for a tapered
cantilever I-beam with variable web height and
flange width.

The steel consumption function accounts for
the inclusion of the web thickness parameter
through its dependence on the maximum height
ho and the web slenderness Aw.

The optimal design problem for steel beams
with variable cross-section (4) is formulated as
a nonlinear mathematical programming
problem [2, 3,7, 8, 23].

my,, = 2plbs oty fsz dz + plhy, ot,, ffhz dz - min 4)
l l

The objective function for minimizing the
steel mass (4) incorporates all geometric
parameters of the beam’s cross-section and
their variation along the beam’s length (2). The
deflection constraints are adopted as the
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governing restrictions, where Ay, denotes the
limiting displacements of the structure.
Displacements are determined using Mohr’s
integral (3).
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The condition that the structure’s deflections
do not exceed the allowable limits depends on
the variability of the geometric properties of the
I-section. Therefore, in its general form, this
condition can be expressed as a function of the
optimal height determined based on minimum
steel consumption under strength conditions.
Applying the optimality condition for 1-beams
[7,8,16,23] if, in each current cross-section, the
total area of the two flanges equals the area of the
web, this constitutes a sufficient condition for an
optimal cross-section. If every cross-section
along the length of the structure is optimal, then
the entire structure is optimal in terms of steel
usage

hth,z hohz
245, = tyh, = ‘;W =5

However, due to the discreteness of the
available rolled steel sections (in terms of
thickness) and the need to satisfy the web
stability conditions, a correction factor (kp) is

apl* Py

1

introduced for the flange area. Designers are
often forced to deviate from the optimal web
height by adjusting the flange width and area.
Therefore, in subsequent research, it is assumed
that the rational distribution of steel along the
cross-sectional height of the I-beam between
the web and the flanges will follow the
condition below.

2trbyohy
(hofudho  °

Thus, taking into account the rationality
condition for each cross-section of the beam,
the moment of inertia (2) takes the following
form.

 bbrohw _ 1, (9)
L
(hofuzdho 2

he (1 1
— 3 — —
Lz = (hofnz) 24, (2 kp + 6) (6)

The generalized expression for deflections is
obtained using Mohr’s integral (3).

n S

EE&(h&)@kV

The formulated problem is ultimately
stated as a nonlinear programming problem: to
determine the minimum normalized steel
consumption for a cantilever I-beam structure
with variable web height and flange width,
subject to serviceability limit state constraints
and the rational (optimal) distribution of steel
along the cross-sectional height (5) as well as
deflection constraints (7).

1 2
my _ h’O Z (8)

— min.
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Condition (7), expressed in dimensionless
form, has the following analytical
representation.

I Al Ob
Euler’s equation takes the following form.
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The Lagrangian function from Equation (10)
along with the deflection constraint from
Equation 9 (non-rigidity condition,

H%WAJZMWAE%%+D+%W

N

z
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| z
J 3¢3 d(T)
0 h0 fhz

13

For the formulated problem, taking into
account the relationships between the

hy f, N
al:()l hz ﬂ,\zl(kb +1):|

&\ Ay
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(10)

compatibility condition), is expressed in the
following form (11)

fﬁlp—f]

@&éyﬁ

A
__ﬂ_Jh_E%}kb+ij:o
Ayl B2~ 6

geometric characteristics, Euler’s equation

takes the following form after differentiation

fﬁl@_fj
YA
S N |
hS S Lj
|3

+ /Imn

a{ho th ]
|

ho z

A |

Thus, Euler’s equation has been obtained in a
generalized form for steel beams with variable
cross-section.

Task 1. At this stage of the research, it is more
rational to consider cantilever beams with
variable cross-section

Determine the optimal topology of a
cantilever steel I-beam (welded section) under a
parabolic distribution of the bending moment
along the length of the structure.
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The Euler’s equation, taking into account the
assumed law of bending moment variation
along the beam’s length, takes the following
form.
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g P | T |

The pattern of variation in beam height as a
function of the coefficient Am is described by
the following analytical equation.

1/4
3/4
hf (12)
et | ]
0 (kb +1)
Al
3/4
9/4
My | _ 34 3 1.2
| "1 h |
7(kb +1)
Al
The deflection constraint (compatibility expression (12) into the integral of condition
equation, non-rigidity condition) can be written (9).

in the following form after substituting

AyEl hy (1, 1) | hy (kp+1) VO L
o _| Mo \%b _L l
TUEW(Ek“EJ‘[%WI ’ } {[1 |J (3)

ma

After integration, we obtain the formula for determining the value of the coefficient Am.

| 1/3 | 4/3
7(ky +1) Al ] 1% 713 (13)
ho A, El L2
Ay = 1 E o

12 7kb +—

2 6
We substitute the coefficient koedimieHTa Am Ultimately, the relative height of the steel
in Euler’s equation (11) using formula (13). beam’s cross-section along its length, depending
4/3 on the design conditions (compliance with
oy M 16/3 deflection and strength constraints), follows a

he £ A, El by ( 7 J power-law relationship.
= 1-— :
I

I4 4/3
4 lkb -i-1
2 6
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Alternatively, by referring back to the web
thickness of the maximum cross-section:
1/tw = Aw /ho

1/3

hofmz(v]““ e (1] (15)

| 4 1 1)A El |
tyl =kg+= 1|7
W(z b"g

Thus, the rational height of a beam with
variable flange width and web height follows a
power-law dependence (14,15). Interestingly,
this  power-law relationship is  closely
approximated by a linear function, which opens
the possibility of approaching the optimal
topology by adjusting the gradient of geometric
variation of the flange and web — as

| 4
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1/3

| 413
T L 14
SN "

demonstrated in [7,8] based on the criterion of
steel consumption.

The derived analytical expressions (14),(15)
make it possible, at the initial stage of variant-
based design, to determine the rational height of
the maximum cross-section.

Task 2. Determination of the rational height

of the support cross-section of a cantilever
steel beam with variable flange width and web
height.

To solve this problem, it is necessary to
equate the algebraic formulas (15) and (1). In
addition, the coordinate of the initial cross-
section must be set as z=0.

1/4
M(l—}/h i)s :(Zj I__q_b 1

Two important relationships can be derived from
the last equation.

413 (16)
(1—yh|i)s=[1—lz—J 5s=4/3
h_o_(zj”“ T el (17)
14 i/tw(lkb+1)ElAn
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The analytical formula (16) makes it possible
to determine the degree of cross-sectional
variation of the I-beam along the length of the
structure at the very first stage of design.

Formula (17) allows for the determination of
the rational height of the cross-section of an I-
beam with variable web height and flange width
at the maximum section, where the bending
moment is applied.
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CONCLUSIONS AND PROSPECTS FOR
FURTHER RESEARCH

The analytical relationships (14, 15)
describing the rational topology of a steel
cantilever I-beam with variable cross-section
have been derived, based on deflection
constraints and the optimality conditions for
each cross-section in terms of steel consumption.
An additional analytical formula has also been
obtained for determining the rational height of
the maximum cross-section of a tapered I-beam
at the initial stage of structural design.

The general form of the analytical expressions
(14,15) provides the opportunity, when
transitioning to a piecewise-linear variation of
the 1-beam cross-section with variable web
height and flange width, to determine the optimal
structural  topology in terms of steel
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consumption,

while

constraints.

variation of the cross-sectional moment of
inertia.
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PALIIOHAJIBHA TOIOJIOTISI
CTAJIEBUX KOHCOJILHUX BAJIOK
31 SMIHHOIO IIIMPUHOIO MOJULD I
BUCOTOIO CTIHKH ITPU
OBMEKEHHSIX 110 IIPOTUHY TA
MIL[HOCTI

Jlrobomup JDKAHOB

AHoTalis.Y cTaTTi pO3B’A3y€ThCS  3adaua
BHOOpPY  ONTUMAIBHOI  TOMONOrii  cTayieBoi
KOHCOJIBHOI ~ JTBOTaBpOBOi Oanku 3i 3MiHHOIO
BHCOTOIO CTIiHKH Ta IIWPHHOIO TMOJUIH 32 YMOBHU
OOMEXEHb 10 NPOTMHY Ta 3a HPUIYIICHHIM
ONTUMANBHOTO PO3IOMAITY CTali B KOXHOMY
MIONIEPEYHOMY  TIepepi3i  BIAMOBITHO JO YMOB
MiITHOCTI.  3aja4a  pO3B’SA3YETbCA  METO/0M
MHOXHMKIB Jlarpamka. B sgxocTi  kputepiro
ONTUMANBHOTO  TPOEKTYBAaHHA  MPHAMAETHCS
niboBa (QYHKIIS MiHIMI3alil BHTpaTH CTaji Ha
KOHCTPYKIit0.  J[isi  KOXKHOrO  MONEpeYHOro
mepepizy  OPUHAHATO  YMOBY  ONTHMAJIBHOTO
pO3IIOAUTY CTalli MK TOJIMIIMH Ta CTiHKOIO Ha
OCHOBI1 KpHUTEPiiB MIITHOCTI. MOXIIUBI BiXHICHHS
BiJl ONTUMAJIBHOI'O CIIIBBIAHOIIEHHS MK IUIOLIEIO
MONMIF 1 TUTOMICI0  CTIHKM  BPaXOBYIOTHCS
JIOMaTKOBHM KoediIlieHTOM. 3ajada HaJICKHUTh 0
KJlacy 3a/1a4 HeJiHIHHOTO MporpamyBaHHS. YMOBa
MINHOCTI CTIHKA BB@XXA€ThCS HEAKTUBHOK 1
3a0e3rmedy€eThCcsl  KOHCTPYKTUBHHUMH  3aXOJaMu
(pebpamu  xopcTkocTi cTiHku). [lo3aruomuHHa
CTifikicTh  Oanku (10  OOKOBOTO  BUTHHY)
3a0e3meuyeThes BiJIITOBITHOIO CHUCTEMOIO
TOPU30HTATBHUX 3B’ SI3KIB Y3/IOBXK HOJHIIb.

OTpuMaHO aHANITHYHY (QYHKIIIO, IO OMHUCYE
3MiHy TIONEPEYHOro Mepepi3y B3AOBXK JOBXHHU
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KOHCOJIHOI 3MiHHONIEpEPi3HOI JBOTaBPOBOi OanKu
32 yMOB  onTuMmizamii npu  PIBHOMIPHO
pO3IIOAUICHOMY HAaBaHTAXCHHI Ta  3aJaHOMY
BIIHOCHOMY TIPOEKTHOMY TMporuHi. BuBenena
aHaMITHYHA QYHKIIS Ui BITHOCHOI ONTHMAaJIbHOT
BHCOTH JBOTaBpPa B3IOBX JOBXHHU KOHCTPYKLII €
CTETICHEBOIO Ta 3alIe)KUTh BiJ HABaHTAXKEHHS,
OOMEXeHb [0 MPOTHHY 1 ONTUMAalbHOTO abo
palioHaJbHOTO PO3MOAUTY CTadl B  KOXHOMY
repepizi. OnTUManbHa BHCOTA JBOTABPOBOI OAIKH
IUIA  ONOPHOTO Tmepepisy (B SKOMYy BHHHUKA€
MaKCHUMAaJbHUM 3TUHAJIbHUN MOMEHT)
BH3HAYAETHCS 3T1THO 3 YMOBaMH 3a1aui.

BusiBneHi 3akOHOMIPHOCTI 3MiHH ONTHMAbHOT
BHCOTH Oanku J03BOJISIIOTH BU3HAYUTH
pauioHaJIbHY TONOJIOTi0 KOHCTPYKIIi Ta BpaxyBaTH
MO>KJIUBICTh BUHUKHEHHS MiJABUILECHUX HANPY>KEHb
y mepepizax 3 MEHIIOK BUCOTOIO. IlinTBepaKeHO,
OI0 ONTUMajJbHE  KOHCTPYKTHBHE  pilllEHHA
3aJIeKUTh BiJl 3aKOHY PO3IOIUTY HAaBAaHTAXCHHS.
OTpumaHi pe3yNbTaTH JO3BOJISIIOTH BU3HAYUTH
CTYIIHb 3MIHHOCTI BHCOTH MOINEPEYHOTO Mepepizy
JUTSL ONTUMAJIBHOI TOMOJIOTI].

Bugseneni aHATITHYHI hopmymu TS
ONTHUMAJIBHOT BUCOTU OAJIKH 31 3MIHHOIO ITUPUHOIO
MOJIMIB Ta 3MiHHOIO BUCOTOIO CTIHKH Jal0Th 3MOTY
BJKE Ha IEPIIOMY €Talli BApiaHTHOT'O IPOEKTYBAHHS
OLIIHUTH e(EeKTHBHICTb 3arporoHOBAaHOTO
KOHCTPYKTHBHOTO PillICHHS.

KaiouoBi cjoBa: mpyxHa cranmeBa Oalika;
KOHCOJIbHA 0ajiKa; ONTHUMI3allisl 32 BUTPATOIO CTal
mpu  OOMEXKEHHSX IO TMPOTHUHY; ONTHUMAaIbHI
MOTIEPEYHI  Tepepi3u JBOTaBpa 3a yMOBaMH
MittHOCTI; MeTo 1 Jlarpamxka.

BynisenbHi koHcTpyKUjii. Teopis i npakTuka * 16/2025



