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Abstract. The article presents the results of an
experimental and theoretical study of the prediction
of deflections of timber beams made of three types
of wood: massive, glued laminated and cross-
laminated timber. The aim of the work is to compare
the adequacy of the classical Euler-Bernoulli and
the Timoshenko beam theory in predicting
deflections under static loading.

Deflections of simply-supported beams under
concentrated loading in the middle of the span were
experimentally investigated. Experimental values of
deflections and mechanical characteristics were
determined for each type of timber. Theoretical
deflections were calculated according to the Euler-
Bernoulli and Tymoshenko beam theories for
identical conditions.

Comparative analysis showed that the Euler-
Bernoulli beam theory underestimates the
deflections, with relative errors within 9%...15%,
indicating a significant influence of shear
deformations. On the other hand, the Timoshenko
beam theory demonstrated much better convergence
with experimental data, with errors
within -2%...+4%.

To increase the accuracy of prediction by Euler-
Bernoulli beam theory, it is proposed to introduce
averaged empirical shear coefficients determined on
the basis of experimental results. The application of
these coefficients allowed to significantly reduce
the discrepancies between the theoretical and
experimental values of deflections for all studied
timber types.

The obtained results confirm the importance of
considering shear deformations in the analysis of
beams made of timber-based materials. The
application of the Timoshenko beam theory or the
modified Euler-Bernoulli theory with considiration
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of empirical shear coefficients is more reasonable
for accurately predicting their deformation
behavior.
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INTRODUCTION

In modern construction and reconstruction,
significant attention is paid to the use of timber
as an ecological and renewable construction
material. Timber beams are important load-
bearing elements in plenty types of structures,
and accurate prediction of their behavior under
load is critical to ensure the reliability and
durability of structures. Despite the centuries-
old history of the use of timber, the study of the
peculiarities of its mechanical behavior and the
application of modern theoretical models for its
analysis remain relevant, taking into account
the appearance in the last century of a number
of new timber-based materials [1, 17].

In modern engineering analysis and design
of structures, beams play a key role as elements
that work in bending.
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For adequate design and analysis of the
behavior of beams under load, numerous
theoretical models have been developed, each
one has its own scope of application and is
based on certain simplifying assumptions
regarding the material, geometry and
deformations of the element.

The Euler-Bernoulli beam theory (EBT) and
the Timoshenko beam theory (TBT) stand out
among the classical and most widely used
theories. The Euler-Bernoulli theory, which is
the foundation for many engineering
calculations, is based on the hypothesis of the
invariance of the normals to the neutral axis of
the beam during deformation and the absence of
shear deformations. Ehe Timoshenko beam
theory takes into account the effect of shear
deformation and rotational inertia, which
makes it more accurate for the analysis of short
and thick beams, as well as beams subjected to
high-frequency dynamic loads [2, 3, 18, 19, 20].

Beside these fundamental models, there are
other, more complex theories that include
additional factors, such as the effects of
curvature of cross-section, nonlinearity of the
material, more complex cross-section shape.
The development of computational technology
has also led to the emergence of numerical
methods, such as the finite element method
(FEM), which allow to analyze beams with
complex geometry and support/connection
conditions without significant simplifying
assumptions.The Rayleigh beam theory is an
extension of the Euler-Bernoulli theory, which
takes into account the rotational inertia of beam
cross-sections [4, 5].

The Reddy-Bickford third-order beam
theory is a variant of the higher-order beam
theory that takes into account the effects of
shear deformation during beam deformation.
Unlike the classical Euler-Bernoulli beam
theory, which neglects shear deformation, and
the first-order Timoshenko beam theory, which
assumes a constant distribution of shear strains
over the cross-section, the Reddy-Bickford
beam theory uses a cubic function to describe
the longitudinal displacement along the
thickness of the beam. This allows for the
nonlinear distribution of shear strains and
stresses to be considered, which is more
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realistic for thick beams or composite materials
[15, 16].

High-order beam theory models extend
Timoshenko theory by introducing additional
degrees of freedom or higher derivatives for a
more accurate description of deformations
[6, 7].

Theories of composite beams - the analysis
of such beams requires considiration of the
features of their structure, such as the difference
in the deformation modulus of the layers, the
strength of the connection between the layers,
etc. [8, 9].

Although the finite element method is not a
“theoretical model” in the traditional sense (as
a set of analytical equations), it is a powerful
tool for the analysis of beams of any
complexity, based on the discretization of a
continuous system into a finite number of
elements [10, 11].

In this article, as a continuation of research
[12], the results of comparing experimental data
and theoretical calculations according to the
two most common beam theories: Euler-
Bernoulli and Timoshenko are presented.

THE PURPOSE

To investigate the possibility of application
of the Euler-Bernoulli and Timoshenko beam
theories for theoretical calculations of
deflections of beams made of three different
types of timber: massive (MT), glued laminated
(GLT), and cross-laminated timber (CLT).

To conduct a comparative analysis of
experimentally obtained deflection values with
the results of theoretical calculations according
to both beam theories to assess their adequacy
in predicting deformations of timber beams.
Based on this comparison, to determine
empirical refinement coefficients for the Euler-
Bernoulli beam theory, which would consider
the influence of shear deformation and allow to
increase the accuracy of its predictions for the
studied types of wooden beams.

THE MAIN CONTENT

Previously, three types of timber beams
produced of local pine were experimentally
investigated: massive, glulamand CLT (Fig. 1).
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The experiments were performed for simply
supported hinged beams with a concentrated
load in the middle of the span. The calculated

beam span [ = 1960 mm, width b = 90 mm,
height h = 145 mm.
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Fig. 1. Beams cross-section: a — massive; b — glulam; ¢ — CLT
Puc.1. Ilepepi3u Oanok: a - MmacuBHa; O - kieeHa; B - CLT (kieeHuil GaraTomapoBUii KOHCTPYKTUBHHUMA

Marepian)

The deformation modulus, shear modulus
and deflections are determined (Tables 1).

The Euler-Bernoulli beam theory is the most
common and basic approach for analyzing the
bending of long and thin beams.

Table 1. Experimentally determined deformation
modulus and shear modulus
Taou.1. Moaynb npy>XKHOCTI Ta MOITYJTb 3CYBY

The main assumptions (Fig. 2):

- the beam is straight, prismatic and made of a
linear-elastic homogeneous material;

- the cross-sections that were flat and
perpendicular to the beam axis before loading
remain flat and perpendicular to the beam axis
after loading (shear deformation is ignored);

- the deformations are small;

- the loading acts in the bending plane;

- the beam axis is a neutral axis, where bending
does not cause tension or compression.

Timber type Epean, GPa Gmean, GPa
MT 7.658 0.479
GLT 7.292 0.456
CLT 6.108 0.382
a undeformed
b
C

(up,wg)

Fig. 2. Beams schemes: a — undeformed; b — Euler-Bernoulli beam; ¢ — Timoshenko beam [13]
Puc.2. Cxemu Ganok:a — HereopmoBaHa;0 — 6anka Eitnepa-bepaymii;B — 6anka Tumomenka [13]
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The main differential equation of beam
bending according to EBT [3]:

d—2<E1 dz_w> —qgx)=0 @

dx? dx?
where x — coordinate along the beam axis;
w — beam deflection;
EI — bending stiffness;
q(x) — distributed load.

For a simply supported hinged beam
subjected to a concentrated load applied at the
midspan, according to the Euler-Bernoulli
beam theory, the maximum deflection is
determined by the expression [3]:

JE )
Wmax = 4ep]

where P — concentrated load;
[ — beam span.

The Timoshenko beam theory extends the
classical Euler-Bernoulli theory by considering
shear deformations and rotational inertia,
making it more accurate in the analysis of short,
thick, or high-frequency beams.

The main assumptions (Fig. 2):

- the beam is straight, prismatic and made of a
linear-elastic homogeneous material;

- the cross-sections remain flat, but not
necessarily perpendicular to the neutral axis of
the beam after loading;

- small deformations and rotations;

- the rotational inertia of the cross-section
considered;

- the loading acts perpendicular to the beam
axis.

In the case of the Timoshenko beam theory,
we have two main differential equations [3]:

;—x["“ (%* o)|+am=0 4
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d do dw
L (51%9) ~voa (2 1+ 6) =0

dx dx dx (4)

where  x — coordinate along the beam

axis;

w — beam deflection;

E1 — bending stiffness;

q(x) — distributed load;

¢ — rotation of the beam section;

GA — shear stiffness;

K — correction coefficient of shear
stiffness (depends on the cross-
section shape, k¥ =5/6 for
beams with rectangular cross-
section).

The maximum deflection is determined by
the expression [3]:

P13  PL

_ P 5
Wmax = 2801 ¥ 2rcA ®)

Comparing the expressions for determining
the deflections for EBT expression (2) and TBT
expression (5), we see that in the expression of
Timoshenko beams:

- the first part is the simple deflection for the
Euler-Bernoulli beam, which takes into
account only bending deformations;

- the second part is the deflection subjected to
shear, which occurs due to the fact that the
cross-section of the beam is deformed (this is
ignored in the classical theory).

BukoHaBmIM TOpIBHSHHS  BUpPa3iB s
Bu3HavyeHHs nporuHiB i TBED Bupas (2) Ta
TBT Bupas (5), 6aunmo mo y Bupaszi Oamku
TumoreHka:

For a more detailed analysis and the ability
to trace the influence of the load level on the
values of theoretical deflections determined by
EBT and TBT, it was decided to perform
calculations for three load levels: ~35%, ~70%
and 100% of the maximum applied load during
the experimental study. The calculation results
are given in Table 2.
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The theoretically calculated results were
compared with the experimentally obtained
ones. Having analyzed the theoretical
deflection results, we can conclude that for the
studied types of beams, the EBT gives a rather
significant underestimation of deflections

compared to the experimentally obtained ones:
MT-10...12%; GLT-9...12%; CLT-14...15%.

On the other hand, calculated results by the
TBT model, gives a fairly good correspondence
between the theoretically calculated results and
the experimental ones: MT —-0.6...1.3%; GLT
—-1.8...0.8%; CLT - 3...4%.

Table 2. Experimentally determined &, and theoretically calculated deflections under load P, according to the
Euler-Bernoulli beam theories 65 and Timoshenko &4

Ta6a. 2. EkcniepuMeHTaNbHO BW3HAUCHI MPOTMHH J, Ta TEOPETUYHO PO3paxOBaHi NPOTHHU T
HaBaHTXEHHSIM P, 3rimHo 3 Teopiero 6anku Eitnepa-bepuynnidgp Ta Teopieto 6anku TumorieHka &y

Timber type| P, kN Somm | Sggmm % x 100%| &7, mm 6‘36;‘% x 100%
3.27 3.28 2.93 12.0 3.24 13
MT 6.10 6.00 5.46 0.8 6.04 -0.6
8.81 8.74 7.89 10.7 8.72 0.2
3.27 3.34 3.08 8.6 3.40 1.8
GLT 6.10 6.28 5.74 9.4 6.34 1.0
8.81 9.23 8.29 114 9.16 0.8
2.62 3.37 2.94 145 3.25 3.6
CLT 5.15 6.58 5.78 138 6.39 2.9
7.11 9.14 7.99 14.4 8.82 3.6

For the possibility consideration of the effect
of shear deformation for the Euler-Bernoulli
beam theory, the principle described in [14] was
applied, where by taking into account the shear
deformation of the cross-section, lattice
structures (trusses) were equalized to beam
ones for the dynamic properties calculation.
Consequently, the averaged shear coefficient
ks was applied. The coefficient k; is
determined by the ratio of the beam deflection
determined by EBT &gp to the actual beam
deflection under static loading &,.

o
kg = — (6)
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The determined
performed in Table 3.
The averaged shear coefficient is aimed at
reducing the stiffness characteristics of the
beam according to the Euler-Bernoulli model
and accordingly expression (2) takes the form:

coefficients k; are

PP
Wmax = 48E Tk mean

(7)

where kg meqn—mean value of the coef-

ficients k; determined for
each type of beam

The k coefficients calculated according to
expression (6) are given in Table 3.
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Table 3. Determined coefficients kg
Ta6a. 3. BusHaueHHs Koe(bIIbIdHTA K¢

Timber type kg

kG,mean

0.89
0.91
0.90

MT 0.90

0.92
0.91
0.90

GLT 0.91

0.87
0.88
0.87

CLT 0.88

ISSN 2522-4182

A comparison of the calculated deflections
according to the refined Euler-Bernoulli beam
theory, taking into account the shear
deformation, by the averaged k. coefficient
with the experimentally obtained data was
performed.

The comparison results are performed in
Table 4.

Table 4. Experimentally determined &, and theoretically calculated deflections under load P, according to the
Euler-Bernoulli beam theory considering the shear coefficient 5z ¢

Ta6.a. 4. [lopiBHAHHS €KCIIEPUMEHTATHHO BUSHAYCHHUX MPOTHHIB O 3 TEOPETUYHO PO3PAXOBAHMMH 32
teopiero Eiinepa-bepryii 3 ypaxyBaHHSIM 3CyBOBOTO Koeilli€eHTa OEB,G

Timber type P,,kN 8., mm O, mm M x 100%
’ 8eB,G
3.27 3.28 3.25 1.0
MT 6.10 6.00 6.06 -0.9
8.81 8.74 8.75 -0.1
3.27 3.34 3.38 -1.1
GLT 6.10 6.28 6.30 -0.3
8.81 9.23 9.10 1.4
2.62 3.37 3.36 0.2
CLT 5.15 6.58 6.61 -0.4
7.11 9.14 9.12 0.2

The EBT model refined by applying the k.
coefficient showed a high correspondence of
the theoretically calculated results with the
experimental ones: MT-0...9-1%; GLT-
1.1...1.4%; CLT — -0.4...0.2%.

CONCLUSION

The conducted experimental and theoretical
study of the deflections of beams made of
massive (MS), glued laminated (GLT) and
cross-laminated timber (CLT) allowed us to
compare the adequacy of the application of the
classical Euler-Bernoulli beam theory (EBT)
and the Timoshenko beam theory (TBT).

ByniBenbHi koHCTpyKuii. Teopis i npakTuka * 16/2025

Analysis of theoretical calculations showed
that the use of EBT leads to a significant
underestimation of deflections compared to
experimental data for all studied types of
timber beams (MT - 10...12%; GLT -
9...12%; CLT — 14...15%). This indicates a
significant influence of shear deformations on
the actual deformation behavior of timber
beams and composite beams made of timber-
based materials.

On the other hand, the use of the
Timoshenko beam theory demonstrated a high
correspondence of the theoretically calculated
deflections to the experimental values (MT — -
0.6...1.3%; GLT—1.8...0.8%; GLT
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3...4%). This confirms the accessibility of
consideration of the shear deformations while
analyzing beam elements made of timber-
based materials to ensure high accuracy in
predicting their behavior under load.

To increase the accuracy of predicting
deflections according to the classical Euler-
Bernoulli beam theory, an averaged empirical
shear coefficient k¢ ;.04 Was applied. The use
of this coefficient allowed to significantly
improve the convergence of theoretical and
experimental results (MT —-0.9...1%; GLT —
-1.1...14%; CLT - -04...0.2%). The
determined averaged values of the shear
coefficient ks peqn are: 0.90 for MT, 0.91 for
GLT and 0.88 for CLT.

Thereby, the results of the study confirm that
for accurate prediction of deflections of
wooden beams, preference should be given to
the theory of the Timoshenko beam or other
theories that take into account the shear
deformation. In cases where the Euler-
Bernoulli theory is applied, it is recommended
to use the proposed empirical shear
coefficients to consider the influence of shear
deformations and increase the accuracy of
calculations.

For the further research, it will be advisable
to investigate the influence of the cross-
sectional dimensions, beam length, number
and thickness of lamellas (for GLT and CLT)
on the accuracy of calculations with the EBT
and TBT models, as well as to determine and
compare the shear coefficients ks 1eqn.

Besides the stated above, the importance of
this work is emphasized in the context of
calculations of multilayer composite beams
under dynamic and impulse loads. The
obtained results simplify future analysis of
experimental studies, in particular, due to the
possibility of effective analysis of natural
frequencies, which is crucial in modeling and
predicting the dynamic behavior of structures.
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AHoOTalis. Y CcTaTTi NPEACTaBICHO PE3yJIbTaTh
EKCIIePUM EHTaIbHO-TEOPETUIHOTO  JTOCTIIKEHHS
MPOTHO3YBaHHS TIPOTHHIB JepeB’sHUX 0aloK,
BUTOTOBJIEHUX 3 TPHOX THOMIMPEHUX THIIIB
JIEPEBUHU: MACHUBHOI, KIIEEHOI Ta MEPEXPECHO-
kiaeeHoi. Meroro po0OOTH CTano NOPIBHAHHS
aJeKBaTHOCTI KiacwdHOi Teopili Oanku Eitmepa-
Bepuymmi Tta Teopii Oanku Tumomenka y
MIPOTHO3YBaHHI IXHIX TPOTHHIB MM CTATUIHIM
HaBaHTAKECHHSIM.

ExcniepiMeHTanbHO  JIOCHIIKEHO  MPOTHHHU
LIAPHIPHO OMNEPTUX OajloK NP 30CEPEmaKECHOMY
HaBaHTAXEHHI TocepenwHi  mpombory.  Jms

KOYHOTI0 THITY JICPEBUHU BU3HAYEHO
CKCIICpUMEHTAJIbHI ~ 3HAYCHHS  MPOTUHIB  Ta
MeXaHiyHi XapaKTEPUCTUKH. Teopernuno

pO3paxoBaHO TMPOTHHU 3a Teopicro  Oanku
Eitnepa-bepnymii Ta Tumonienka ajist iIeHTHIHUX
YMOB.

[opiBHsuIbHMIA aHAJi3 MOKa3aB, IO Teopis
Oanku Einepa-bepHymti HEMOOLIHIOE IPOTHHY, 3
BifHOCHMMH mnoxuOkamMu 10 9%...15%, mo
CBIUUTH MPO 3HAYHHUHN BILTUB JeopMariiii 3cyBy.
Harowmicrs, Teopis Oanku Tumonienka
MPOJIEMOHCTpYBalla 3HAYHO Kpamry 301KHICTh 3
eKCIIEPUMEHTAJIbHUMHI JaHUMHU, 3 MOXHOKaMH B
Mexax -2%...+4%.
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Jis migBUINEHHS TOYHOCTI MPOTHO3YBaHHS 3a
teopiero Oanku Einepa-bepHyiuti, 3ampornoHOBaHO
BBEJICHHSI YCEPENHEHUX EMITIPUIHUX KOeilieHTIB
3CyBY, BU3HAYEHHUX Ha OCHOBI
EKCIIEPUMEHTAIPHIX PE3YJIBTATIB. 3aCTOCYBAHHS
X Koe(ilieHTIB JO3BOJIIO CYTTEBO 3MEHIIUTH
PO301KHOCTI MIXK TEOPETHIHUMHU Ta
EKCIIEPUMCHTAIbHUMH 3HAYCHHSIMHA TIPOTHHIB JJIst
BCIX JOCTIIKYBaHUX THITIB JICPEBUH.

OTtpumani pe3yibTaTH HiATBEPKYIOTH
Ba)XJIMBICTh ypaxyBaHHs Jedopmariii 3cyBy npu
aHami3i Oanok 3 marepiani. 3acTocyBaHHsS Teopii
Tumomenka  abo  moxumgikoBaHoi  Teopii
Eitnepa-beprymii 3 emmipuaaAMU KoedillieHTaMu
€ Onpml  OOIPYHTOBAHMM  JJI  TOYHOIO
MIPOTHO3YBaHHS IXHBOI nedpopMaTuBHOT
MMOBEIIHKH.

KuarouoBi ciaoBa: macuBna nepesuna (M),
kneena gepesuna (KJ[), mepexpecHo-KiieeHa
nepesuna (ITKJ]), monmyns nmedopmarii, Momyib
nmedopmartii  3cyBy, Teopis Oamkm Efinepa-
Bepuymi, Teopis 6anku Tumorenka
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