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Summary. In modern construction, steel trusses
remain one of the most common types of load-
bearing structures used in the construction of
industrial, civil, and public buildings. Their use is
driven by high load-carrying capacity, relatively
easy installation, and economic feasibility in long-
span structures.
One of the most critical elements of such structures
is the flange joint, through which the main internal
forces are transferred from one part of the truss to
another. The reliability and durability of the entire
system largely depend on the accuracy of its
calculation and design.
Special attention must be paid to situations where
the joint is subjected not only to axial loads but also
to bending moments and torsion, which create a
complex stress—strain state. In such cases,
traditional calculation methods, based on simplified
models and assumptions of uniform stress
distribution, do not always allow for the
identification of local concentrations that may lead
to premature structural failure. In this context,
improving numerical analysis methods that consider
the real spatial geometry of the elements, the
specifics of the connections, and the nature of the
loading becomes especially relevant.
The proposed approach is based on constructing an
analytical model of the joint, enabling the
calculation of internal forces in critical zones
without the need to model the entire truss. This not
only reduces the time required for calculations but
also improves their accuracy. Such an approach
contributes to the early detection of potentially
hazardous zones where stress levels may exceed
permissible limits, thereby reducing the risk of loss
of serviceability.
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PROBLEM STATEMENT

Flanged joints of steel trusses are critical
components of spatial structures, as they serve
as the primary means of transferring forces
between the frame's bar elements. These joints
often exhibit complex stress—strain states
caused by the combination of axial, bending,
and transverse forces. The geometric
configuration of the joint—particularly the
flanges, stiffening ribs, and bolts—Ieads to a
non-uniform distribution of stresses within the
elements.

Traditional analytical and code-based design
methods often rely on simplified assumptions,
such as uniform force distribution or
conventional load transfer areas. However,
numerical modeling, especially using the
component-based finite element method,
reveals the presence of local stress
concentration zones that are not accounted for
in standard calculations. This is particularly
evident in areas remote from the load
application center, such as those affected by
edge effects or contact zones between elements.
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The lack of universal engineering methods
for accurately determining stresses at these
points limits the ability to make informed
decisions about joint design. This poses risks of
underestimating or overestimating structural
load capacity and complicates the assessment
and diagnostics of existing buildings or
structures during technical inspections.

Moreover, the use of circular or rectangular
steel tubes in truss structures complicates the
situation, as these elements are prone to local
buckling. In the presence of rigid flanged joints
with stiffening ribs, highly stressed zones may
develop, often exceeding permissible stress
limits—especially in areas of rib insertion or
welded joints. These zones are difficult to
accurately calculate due to the complex
geometry and interaction between elements.

Existing  standards  provide general
principles for joint design but do not always
allow for precise assessment of the actual stress
distribution in specific cases, such as eccentric
loading, force eccentricity, or combinations of
forces and moments. This highlights the need to
improve design approaches that integrate both
numerical methods (FEM) and practical criteria
for evaluating the strength and stiffness of
joints. Developing a more reliable methodology
will enhance structural safety and reduce the
risk of premature failures during the operational
phase of structures.

ANALYSIS OF PREVIOUS RESEARCH

It is important to acknowledge the
contributions of the "pioneers™ in the study of
flanged joints in trusses made of tubular and
closed  cold-formed  welded  sections,
particularly in developing analytical models for
determining  boundary  conditions  and
evaluating the strength of such joints [11, 12].

In addition to the regulatory documents [2,
3], significant progress has been made in
improving the calculation methodology for
welds in flanged joints [1].

Structural solutions for steel structures and
forms and domes have been investigated[5, 13,
14, 15, 16, 24, 25].

Of particular importance is the advancement
of research on the analysis of bolt behavior in
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flanged joints under complex stress—strain
conditions using the finite element method, as
well as the mechanics of flanged joints in steel
tubes under axial tension [4, 6, 7, 8, 9, 17, 18,
19, 20, 21, 22, 23].

Studies have also addressed the stability of
elastic members with initial imperfections in
steel trusses with rigid joints [10].

Moreover, experimental methods are used in
the research to verify the results of numerical
modeling, including full-scale tests, which
allow for a more accurate assessment of joint
behavior under real loading conditions. These
approaches provide a foundation for the
development of new design recommendations
for flanged joints in steel tubular structures,
taking into account both strength and stability,
as well as technological aspects of fabrication
and welding.

PRINCIPAL RESEARCH

In the classical definition of normal stresses
in a cross-section:

o=2 (1)

The classical definition of normal stresses in
a cross-section lacks a specification for the
distribution of forces over the surface of an
element. It assumes only a uniform stress
distribution, which accounts for idealized
working conditions and does not consider areas
of localized stress concentrations.

In the complex stress—strain state typical of
flange joint connections and structural
elements, it should be understood that stresses
across the cross-section are often non-uniform.
This is due to the presence of stiffening ribs,
welds, and bolt holes, which affect the stiffness
characteristics of the section.

langed joints require particular attention
when subjected to combined loading—axial
compression or tension in combination with
bending and torsional moments. Under such
conditions, a complex interaction occurs
between bolts, welds, and stiffening ribs, which
do not engage uniformly. In real structures,
some ribs may begin to transfer loads earlier
than others due to initial geometric

57



ISSN 2522-4182

imperfections or stiffness variations.

Additionally, it is essential to consider the
impact of assembly and manufacturing
inaccuracies, which can lead to asymmetric
loading of joints. In the spatial behavior of a
truss, even minor misalignments can cause
changes in the direction of internal forces and
overstressing of individual areas.

Forces in flange connections are transmitted
through the flanges themselves, the bolts, and

the stiffeners. To accurately determine the
internal  equivalent  stresses,  numerical
modeling using the finite element method
should be employed. This approach allows
consideration of all specific features of the
joints, namely the geometric configurations and
force effects in the design model 1 (Fig. 1).
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Fig. 1. Distribution of internal equivalent stresses in the top chord of truss Model 1.
Puc. 1. Po3moain BHYTPIIIHIX €KBIBAJICHTHUX HANPYKEHb BEPXHBOTO MosAcy hepMu mozeni 1.

This particular feature of the joint
connection is characterized by end-plate

201,10
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flanges welded to the upper chord and through
stiffeners (Fig. 2).

b

Fig. 2. General view of Model 1 of the analysed joint with bolted connection and welds (a). Cross-section
of the flange connection (b).

Puc. 2. 3aranpHuii B Mozeni 1 po3paxyHKOBOTO By3ja 3 OONTOBHM 3’€IHAHHS Ta 3BApPHUMH IIBaMH (a).
[Tepepi3 daanmnesoro 3’exnanus (b).
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The areas located farther from the load
application point experience greater forces; in
such cases, the local force at point i should be
determined as follows:

% )

' e foam a(a)da

A€
a;- the distance from the load
application point to point i (mm);
any- the boundary of the investigated
area (rad).

Thus, the area of the investigated section
region is determined as:

ISSN 2522-4182

A=t 3)
e
t — wall thickness of the pipe cross-
section;
l; — length of the section subjected to

force.

In the investigated Model 2, if the stiffening
ribs are not continuous, this will significantly
affect the stiffness characteristics of the joint
and will change it from a more rigid connection
to one that is closer to a hinged (pinned) joint

(Fig. 3).

b

Fig. 3. General view of Model 2 of the analysed joint with bolted connection and welds (a). Cross-section

of the flange connection (b).

Puc. 3. 3aranpHuil Bux Mozesni 2 po3paxyHKOBOTO By3Jia 3 OOJTOBMM 3’€IHAHHS Ta 3BapHUMH IIBaMH (2).

IMepepi3 daanteBoro 3’eauanus ().

The distribution of internal equivalent
stresses in the joint shows that when the
stiffness characteristics of the joint change, the
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critical stress zone shifts from the edge areas of
the pipe near the flange to the central zone of
the flange. However, a more uniform stress
transition along the length of the pipe is
observed (Fig. 4).
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Fig. 4. Distribution of internal equivalent stresses in the top chord of truss Model 2.

Puc. 4. Po3monin BHYTPIIIHIX €KBIBaJICHTHUX HAINIPY)KEHb BEPXHBOTO MOSICY PepMH MOACII 2.

The next stage of calculation Model 3 understand the influence and distribution of
involves the introduction of additional internal equivalent stresses in the flange
stiffening ribs with a 30° inclination angle to connection (Fig. 5).

a1,

Fig. 5. General view of Model 3 of the analysed joint with bolted connection and welds (a). Cross-section
of the flange connection (b).

Puc. 5. 3aranpHuii BuA Mozeni 3 po3paxyHKOBOTO By3iia 3 OONTOBUM 3’ €JHAHHS Ta 3BApHUMHM LIBaMu ().
Iepepis daanueBoro 3’equanus (D).

The numerical analysis using the component additional stiffening ribs indicates that the
finite element method with the introduction of uniformity of the distribution of internal
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equivalent stresses occurring in the cross- from the attachment point to the flange (Fig. 6).
sections has further improved along the length
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Fig. 6. Distribution of internal equivalent stresses in the top chord of truss Model 3.
Puc. 6. Po3noain BHyTpIilIHIX €KBiBAJIGHTHUX HANPYXEeHb BEPXHBOTO MosAcy hepMu Mozeni 3.
In Model 4, a variant with additional non- condition for this addition must be that t, < ¢,

continuous stiffening ribs is also considered, (Fig. 7).
while a stiffness ring is introduced along the
outer perimeter of the pipe. An important

200,1

a b
Fig. 7. General view of Model 4 of the analysed joint with bolted connection and welds (a). Cross-section
of the flange connection (b).
Puc. 7. 3aranpHuii Bux Mozelni 4 po3paxyHKOBOTO By3Jia 3 OONTOBHM 3’€IHAHHS Ta 3BapHUMHU ILBaMH (a).
Iepepis daanueBoro 3’equanus (D).
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The most optimal joint stiffness has been
determined, transitioning from the semi-
hinged form of connection observed in Models
2 and 3 with non-continuous ribs to a rigid
connection. This is accompanied by the most

uniform distribution of internal equivalent
stresses, which provides an advantage in the
even performance of the joint. The maximum
stresses that occur are within the range of 125
MPa (Fig. 8).
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Fig. 8. Distribution of internal equivalent stresses in the top chord of truss Model 4.
Puc. 8. Po3nozin BHYTPIIIHIX €KBIBAJIEHTHUX HAMPYKEHb BEPXHBOTO MOSICY (hepMu Moei 4.

A consolidated comparison of the finite
element numerical analysis and the resulting
stresses in the investigated Models 1, 2, 3, and

a b

4 is presented as unfolded views of the upper
chords of the truss (Fig. 9) and as the stress
distribution in the flange plane caused by the
weld seam (Fig. 10).

[MPa]

c d

Fig. 9. Unfolded equivalent stress distribution on the upper face of the top chord for Model 1 (a), Model 2

(b), Model 3 (c), and Model 4 (d).

Puc. 9. Po3ropTka eKkBiBaJeHTHHMX HAIPYKEHb BEPXHBOTO TOACY Bepxy Mozeni 1 (a), mogeni 2 (b), mozxerni

3 (c), momemi 4 (d).
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Fig. 10. Stress distribution in the flange plane due to welds: Model 1 (a), Model 2 (b), Model 3 (c), and

Model 4 (d).

Puc. 10. Po3moain Hanpy»XeHb B IOMKHI (IaHI Bix aii 3BapHuX mBiB mozemi 1 (a), moaeni 2 (b), momerni

3 (c), mopemni 4 (d).

For analytical calculation, the
determination of equivalent stresses at any
point of the elements should be improved as
follows:

Ngq " a; 4)
A; - foam a(a)da

OFd,i =

ogq —€quivalent stress at the investigated
point i;

a —angular  coordinate along the
perimeter of the flange or pipe;

a(a) - radial distance from the center of
the load in the direction of angle
a,

foa’” a(a)da — integral value accounting
for the distribution of forces
along the angular perimeter of the
element.

CONCLUSIONS AND PERSPECTIVES
FURTHER RESEARCH

In Models 1 through 4, a trend is observed
toward the reduction of peak concentrations of
equivalent stresses and an improvement in the
uniformity of their distribution.

This study makes it possible to move away
from the classical approach of analyzing the
overall stiffness of the joint and allows not
only for the analysis of stresses in the joints but
also for influencing and structuring the stress
distribution—without changing the cross-
section of the main load-bearing element.

ByniBenbHi koHcTpyKUii. Teopis i npakTuka  16/2025

An improved analytical method for
determining equivalent stresses is proposed as
an alternative to the numerical finite element
method for identifying critical local stress
concentrations.
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YUCJIOBI JOCIIKEHHA
OJIAHIEBUX BY3J1IB ®EPM
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AHoOTaNis. Y cyyacHOoMy OyIiBHHIITBI CTAIEBI
(hepMH 3aTTUIIAIOTHCS OJHUM 13 HAHTIOIITHUPEHITINX
TUIIB HECYYUX KOHCTPYKILiH, 110 3aCTOCOBYIOTHCS
IIpH 3BEJICHHI OyiBeNb MPOMHUCIOBUX, IUBITBHIX
Ta TPOMAJCHKHX OyJiBemb. IX BHKOPHCTaHHS
00yMOBJICHE BHCOKOIO HECYYOK  3JaTHICTIO,
BiJTHOCHOIO JIETKiCTIO MOHTaXy Ta €KOHOMIYHOIO
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JIOLITHHICTIO BUKOPUCTAHHS Y BETMKOITPOTOHOBHUX
criopyJax.

OmHuM 13 HaWBIAMOBITANBHIIINX €JIEMEHTIB
TaKUX KOHCTPYKIIN € (IaHIeBl BY3JH, Yepe3 sKi
MepeIaloThCS OCHOBHI 3yCHJUIS BiJ OJHI€T Yac-
TUHU $epMu 10 iHmoi. HagiifHicTh 1 TOBrOBIYHICTH
yCi€i cuCTeMH B 3HAYHIH MIpi 3aJIE)KUTH caMe BiJ
SIKOCTI BUKOHAHHS PO3PaxXyHKY.

Oco0mHBOi yBaru moTpeOyOTh CUTYyaIlii, KOIU
Ha BY30JI TIIOTh HE TUTBKU OCHOBI HABAaHTAKCHHS, a
i 3ruHaJibHI MOMEHTH Ta KpPYYEHHS, IO
CHPUYHHSIOTh CKJIaIHU I HampyXeHO-
neopMOBaHMA CcTaH. Y  TakMxX  BHUIAAKaX
TpaauLiiiHI METOIU PO3PAXYHKY, K IPYHTYIOTHCS
Ha CHPOINECHUX MOJEISIX Ta HPUIYIIECHHSIX PO
PIBHOMIpHUE PO3MOIN HANPYXEeHb, HE 3aBKIH
JTO3BOJISIIOTH BUSIBUTH JIOKAJTBHI KOHIICHTpAITil, sSKi
MOXYTh  OpPU3BOAWTH 10  TEPEeJYacHOro
pyWHYBaHHS KOHCTPYKIii. 3 omisimy Ha 1Iie,
0COOJTMBO aKTyalIbHUM € yJIOCKOHAJIEHHS METOIIK
YHCENBHOTO aHali3y 3 ypaxyBaHHSM pealbHOl
IIPOCTOPOBOI reOMETPii eJIEeMEHTIB, 0COOIIMBOCTEH
3’€HAaHHS Ta XapaKTepy HaBaHTAKEHHS.

3anporoHoBaHmWA  miaxing — Oa3yeThcsa  Ha
nmoOy/JoBI  aHANITUYHOI ~ MOjAenl  By3iga 3
MOJXKJIMBICTIO PO3PaxXyHKYy BHYTPIIIHIX 3YyCHIb Y
KpUTHYHUX 30HaXx 0e3 ToTpedW IOBHOTO
MoieroBaHHs Beiei pepmu. Lle n03Bossie He nmutiie
CKOPOTHTH 4YaCc, HEOOXITHWHA /s BHKOHAHHS
pO3paxyHKiB, a ¥ MABHIIUTH iX TOYHICTh. Takuit
X1 COpUsi€ PAHHBOMY BHUSABJICHHIO TIOTEHITIITHO
HeOe3MevYHuX 30H, JIeé MOJKIJIMBE IEPEBUIICHHS
TPaHUYHOTO PIBHSA HANpPYXEHb, M0, CBOEID
Yeprolo, 3HIKYE PU3UKHA BTPATH €KCIUTyaTaIliiHO1
MPUIATHOCTI.

Karouosi cJIOBA:. €KBIBaJICHTI
HanpyxeHHsl; (aHelb, KOMIOHEHTHUI METO
CKIHYEHHUX €JIEMEHTIB, YHCEILHE MOIEIIO-
BaHHS, XOPCTKICTh By37a; crajeBa ¢epma;
JIOKaJIbHE HaIPYKECHHS.
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