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1.1 

 

Fig. 1.1 Types of tanks: a) above-ground cylindrical vertical with immovable roof; b) cylindrical 
vertical with floating roof; c) cylindrical vertical with floating roof and with immovable roof 
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Fig.1.2 Types of tanks: a) underground cylindrical vertical; b) cylindrical levels; c) Axially 
symmetric vertical. 
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Fig.1.3 Diagram of the tank with floating roof: 1  shell; 2  pontoon; 3  membrane; 4  the 
bottom of the tank; 5  wind ring; 6  folding ladder; 7  track for tank service; 8   the 
supports of the roof; 9  aeration valve; 10  sealing of the floating roof; 11 - drainage of the roof 

 

  
Table 1.1 The optimal sizes of tanks with floating roofs 
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Fig. 1.4 An example of a node of an adjunction of the roof to the walls of the tank 
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Fig. 1.5 The distribution of the thickness of the shell after optimization in mm 

 

  
Fig. 1.6 Stress by Mizes of the shell after optimization in MPa 
 

 

  
Fig. 1.7 Stress by Mizes of the shell before optimization in MPa 
 

 

  
Fig. 1.8 Chart  reduce the weight of the shell according to the cycles of optimization 
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Block diagram 

 

 

  
Fig. 2.1 Stress by Mizes of the shell before optimization in MPa 
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Fig. 2.2 Stress by Mizes of the shell after optimization in MPa  
 

 

  
Fig. 2.3 The movement in the shell before optimization in mm 
 

 

  
Fig. 2.4 The movement in the shell after optimization in mm 



 

  
Fig. 2.5 Chart reduce the weight of the shell according to the cycles of optimization 
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  0.110715  

Fig. 3.1 The first form of vibrations before 
optimization. The frequency of oscillation 0.110715 
Hz 

 
  0.15036  

Fig. 3.11 The first form of vibrations after 
optimization. The frequency of oscillation 0.15036 
Hz 

  

 
  0.110715  

Fig. 3.2 The second form of vibrations before 
optimization. The frequency of oscillation 0.110715 
Hz 

 
  0.15036  

Fig. 3.12 The second form of vibrations after 
optimization. The frequency of oscillation 0.15036 
Hz 

  

 
  0.117867  

Fig. 3.3 The third form of vibrations before 
optimization. The frequency of oscillation 0.117867 

 
  0.154376  

Fig. 3.13 The third form of vibrations after 
optimization. The frequency of oscillation 0.154376 
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Fig. 3.4 The fourth form of vibrations before 
optimization. The frequency of oscillation 0.117867 
Hz 

 
  0.154376  

Fig. 3.14 The fourth form of vibrations after 
optimization. The frequency of oscillation 0.154376 
Hz 

  

 
  0.119906  

Fig. 3.5 The fifth form of vibrations before 
optimization. The frequency of oscillation 0.119906 
Hz 

 
  0.174181  

Fig. 3.15 The fifth form of vibrations after 
optimization. The frequency of oscillation 0.174181 
Hz 
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Fig. 3.6 Sixth form of vibrations before optimization. 
The frequency of oscillation 0.119906 Hz 

Fig. 3.16 Sixth form of vibrations after optimization. 
The frequency of oscillation 0.174181 Hz 

  

 
  0.13072  

Fig. 3.7 Seventh form of vibrations before 
optimization. The frequency of oscillation 0.13072 
Hz 

 
  0.178271  

Fig. 3.17 Seventh form of vibrations after 
optimization. The frequency of oscillation 0.178271 
Hz 

  

 
  0.13072  

Fig. 3.8 Eighth form of vibrations before 
optimization. The frequency of oscillation 0.13072 
Hz 

 
  0.178271  

Fig. 3.18 Eighth form of vibrations after 
optimization. The frequency of oscillation 0.178271 
Hz 

  

  



  0.151097  

Fig. 3.9 Ninth form of vibrations before 
optimization. The frequency of oscillation 0.151097 
Hz 

  0.21346   

Fig. 3.19 Ninth form of vibrations after optimization. 
The frequency of oscillation 0.21346 Hz 

  

 
  0.151097  

Fig. 3.10 Tenth form of vibrations before 
optimization. The frequency of oscillation 0.151097 
Hz 

 
  0.21346  

Fig. 3.20 Tenth form of vibrations after optimization. 
The frequency of oscillation 0.21346 Hz 

 

  
Fig. 3.21 The distribution of the thickness of the shell after optimization in mm 



 

  
Fig. 3.22 Chart the increase in the shell weight for the cycles of optimization 
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The optimization of propellant tanks with 

floating roof and limitations of the movements, 
stresses, self-oscillations. 
 

Koshevoy Alexander 

Summary.  Raising the level of demand of 
petroleum products has become a problem of 
construction of tanks to store them. The history of 
the tanks with the development of the oil industry 
begins in the 17th century with the increase in 
mining and processing of oil products. At first it 
was earthen reservoirs on clay soils. This 

factories lost some oil products, as well as over 
time, these structures collapsed, thus were very 
dangerous for long-term maintenance of the tank. 
First steel tank suggested V. G. Shukhov, which 
was built in 1878. In 1935 was built of welded tank 
which had a volume of 1000 m3. This method 
made possible moving to industrial level and 
deploying a network of reservoirs in the industrial 
regions of Ukraine and over the world. The 
problem of storing oil under the ground with using 
of natural and artificial voids was solved abroad. 
Today, almost all modern petrol stations, oil depots 
and other factories use welded steel tanks. These 



constructions are reliable and durable, but the 
question arises for every business-economic side of 
the issue: to do individual thickness of steel 
structures for every factory, to save money on 
construction. This is considered necessary for 
optimal automated design of these pools to find the 
optimal solution design. 

This article describes the optimization of fuel 
tank with a floating roof. Optimization is made by 
mathematical method of gradient descent. Spatial 
finite element model built using the finite element 
method. Collected loads on the shell of the fuel 
tank with the floating roof, namely: self-weight of 
structures, snow, wind, load from petroleum 
products in the fuel tank, the process load from 

people and walling. Designed combinations of 
loads, was chosen the most dangerous 
combination, in which the optimization was 
performed for the fuel tank. The objective function 
is the mass. Design variables  thickness of the 
shell. Limitations: stress by Mizes, moving along 
the axes X,Y,Z, the first natural frequency of the 
structure. The results are presented in the diagrams 
show the decrease or increase of the mass -  
objective function under certain constraints of the 
construction. Numerical analysis and conclusions 
were made. 

Keywords: optimization, design, shells, fuel 
reservoir, optimization of reservoirs, optimization 
Femap Nastran, numerical analysis.

  

 
 
 
 
 
 

  


